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Abstract
We study a system composed of two nonidentical qubits coupled to a single-
mode quantum field. We calculate the spectra of the system in the deep-strong-
coupling regime via perturbation theory up to second-order corrections and
show that it converges to two forced oscillator chains for cases well into that
regime. Our predictions are confirmed by the numerical calculation of the
spectra using a parity decomposition of the corresponding Hilbert space. The
numerical results point to two interesting types of behavior in the ultra-strong-
coupling regime: the rotating wave approximation is valid for some particular
cases and there exist crossings in the spectra within each parity subspace.
We also present the normal modes of the system and give an example of the
time evolution of the mean photon number, population inversion, von Neumann
entropy and Wootters concurrence in the ultra-strong- and deep-strong-coupling
regimes.

PACS numbers: 03.65.Ge, 42.50.Ct, 42.50.Pq

(Some figures may appear in colour only in the online journal)

1. Introduction

The Dicke model [1] is the simplest model describing the interaction of an ensemble of
identical two-level systems (qubits) with a single-mode boson field. For weak couplings where
the rotating wave approximation (RWA) is valid, it is known as the Tavis–Cummings model
[2], it is exactly solvable and has been successfully used to describe collective phenomena in
quantum electrodynamics (QED) [3]. For a single qubit, the Dicke model has recently been
known as the quantum Rabi model or just the Rabi model. For many years, the Rabi model
was just a mathematical curiosity as dipole–field systems could not reach in a simple way the
coupling regimes where the RWA breaks. Nevertheless, the system was extensively studied
via the Bargmann representation [4], continued fractions [5–7], semi-classical methods [8],
perturbation theory [9, 10] and coupled cluster [11] methods.
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Recently, the ability of solid-state–cavity–QED [12] and circuit–QED systems to attain
coupling regimes where the RWA fails has reignited the interest in the single-qubit Rabi model.
Circuit–QED systems can reach couplings greater than the field frequency [13]; e.g. ultra-
strong-coupling (USC) [14–16], where couplings are of the order of tens of the field frequency,
g/ω f ∼ 0.1, and deep-strong-coupling (DSC) [17], where couplings are comparable or larger
than the field frequency, g/ω f � 1. Thus, the single-qubit Rabi model has been revisited using
perturbation theory [17, 18], continued fractions [19, 20], Bargmann representation [21–27]
and coherent state methods [28].

Here, we are interested in an experimentally feasible circuit–QED system composed of
two nonidentical superconducting qubits coupled to a strip-line resonator. In the weak-coupling
regime and for identical qubits, this system has been of use in quantum information theory for
coherent storage and transfer between two phase qubits [29] and for resonant two-qubit phase
gates [30]; the validity of the latter breaks for coupling regimes where the full Dicke model
has to be taken into account [31]. The most general model is described by the Hamiltonian

Ĥ = ω f â
†â + 1

2

(
ω1σ̂

(1)
z + ω2σ̂

(2)
z

) + (â + â†)
(
g1σ̂

(1)
x + g2σ̂

(2)
x

)
, (1)

where the two nonidentical qubits are depicted by the Pauli operators σ̂
(k)
j with j = x, y, z and

k = 1, 2 and the transition frequencies ω1 and ω2. The single-mode quantum field is described
by the creation (annihilation) operators â† (â) and the frequency ω f . This model conserves
parity, [�̂, Ĥ] = 0, defined as

�̂ = σ̂ (1)
z σ̂ (2)

z (−1)â†â. (2)

To our knowledge, such a system has only been studied in two simplified forms: one for
identical qubits with frequencies much smaller than the oscillator frequency [32] and the
other for nonidentical qubits where the transition frequency of one of them is set to zero
[33]. Also, particular initial states and parameter values have been used to explore the effect of
counter-rotating terms on entanglement and discord in closed [34] and lossy [35, 36] two-qubit
quantum Rabi systems.

In the following, we discuss the exact and approximate eigenvalues of Hamiltonian (1)
in the weak- and DSC regimes, in that order. Curiously, we find that the validity of the RWA
can be extended into the USC regime by keeping one coupling parameter value low or using
symmetric detunings in the qubits. We also find that for large values of the coupling parameters,
g1, g2 � ω1, ω2, the eigenvalues are described by the spectra of two forced oscillators. We
take advantage of parity conservation to numerically calculate the spectra in each of the parity
subspaces. An important feature of the full two-qubit model emerges at this point: there are
crosses within the spectra of each parity subspace but for exceptional cases like that treated
in [33]. These crossings in the spectra point to classifying the system as not integrable for the
majority of the parameter sets [21]. Then, we present the proper functions via linear algebra
methods and the Bargmann representation [37]. In section 4, we show how the time evolution in
the weak-coupling regime can be calculated in closed form and how to calculate the evolution
of quantities of interest in the parity decomposition. Finally, we close with a brief conclusion.

2. Eigenvalues of the model

It is trivial to calculate the eigenvalues of the general two-qubit quantum Rabi model
(1) in the weak-coupling regime, g1, g2 � ω f , where the RWA approximation is valid; i.e.

the term
∑

j=1,2

(
â + â†

)
g jσ̂

( j)
x becomes

∑
j=1,2 g j

(
âσ̂

( j)
+ + â†σ̂

( j)
−

)
. For the Dicke model,

ω1 = ω2 = ω and g1 = g2 = g, it is safe to say that the exact eigenvalues in the RWA describe
well the system when the relation between the coupling strengths and the field frequency is
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below 10%, g j/ω f < 0.1 [31]. The same can be said for the majority of cases, but we find that
the eigenvalues provided by the RWA for one coupling similar or larger than 10% of the field
frequency can be within 1% of the numerical values for the full Hamiltonian by restricting
the other coupling well below 10% of the field frequency. Something similar occurs via the
symmetric detuning of the qubits with respect to the field frequency: the Hamiltonian under the
RWA provides eigenvalues in good agreement with the full Hamiltonian for couplings larger
than 10% of the field frequency; e.g. for symmetric detunings ω1 = ω f −� and ω2 = ω f +�

with � ∈ [0.1, 0.5], the ground energies provided by the Hamiltonian under the RWA are
within 2.4% of those provided by the full Hamiltonian for coupling values of up to 20% of
the field frequency, g1 = g2 = 0.2ω f , and the mean relative error for the first 20 eigenvalues
provided by the RWA Hamiltonian compared to the full Hamiltonian is up to 7.5%.

We can also approximate the eigenvalues in the DSC regime by assuming that the coupling
parameters are larger than the transition frequencies, g1, g2 � ω1, ω2. In such a case, we can
write the two-qubit quantum Rabi model (1) as a leading Hamiltonian with a perturbation,
Ĥ = Ĥ0 + P̂, where we can use the general rotation R̂y = e−iσ̂ (1)

y θ ⊗ e−iσ̂ (2)
y θ with θ = π/4 to

implement the changes σ̂
( j)
x → σ̂

( j)
z and σ̂

( j)
z → −σ̂

( j)
x leading to the form

H̃0 = ω f n̂ + (â + â†)
(
g1σ̂

(1)
z + g2σ̂

(2)
z

)
, (3)

P̃ = − 1
2

(
ω1σ̂

(1)
x + ω2σ̂

(2)
x

)
, (4)

where the tilde has been used to represent the rotated operator, Õ = R̂†
y (π/4)ÔR̂y(π/4). The

unperturbed Hamiltonian H̃0 is diagonal:

H̃0 = T̂D

⎡
⎢⎢⎣ω f n̂ − 1

ω f

⎛
⎜⎜⎝

g2
+ 0 0 0
0 g2

− 0 0
0 0 g2

− 0
0 0 0 g2

+

⎞
⎟⎟⎠

⎤
⎥⎥⎦ T̂ †

D, (5)

in a driven oscillator basis provided by

T̂D =

⎛
⎜⎜⎝

D̂(g+/ω f ) 0 0 0
0 D̂(g−/ω f ) 0 0
0 0 D̂(−g−/ω f ) 0
0 0 0 D̂(−g+/ω f )

⎞
⎟⎟⎠ . (6)

The displacement operator is defined as D̂(α) = eαâ†−α∗â and the auxiliary coupling parameters
as g± = g1 ± g2. Thus, the approximated eigenvalues up to the second-order correction in the
DSC regime are twofold degenerate:

ε1,m = ε4,m ≈ ω f m − g2
+

ω f
− ε2,+, (7)

ε2,m = ε3,m ≈ ω f m − g2
−

ω f
− ε2,−, (8)

where the second-order correction is given by

ε2,± =
∑
m
=n

ω2
1|〈m|D̂(2g1/ω f )|n〉|2

ω f (m − n) ± 4g1g2/ω f
+

∑
m
=n

ω2
2|〈m|D̂(2g2/ω f )|n〉|2

ω f (m − n) ± 4g1g2/ω f
, (9)

alongside the identity 〈m|D̂(2x)|n〉 =
√

m!
n! (2x)(m−n)e−2|x|2L(m−n)

n (|2x|2), where L(b)
a (z) is a

generalized Laguerre polynomial. The first-order correction due to the perturbation P̃ is null.
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Figure 1. A piece of the numerical spectra for the quantum Rabi Hamiltonian considering subspaces
of up to one thousand excitations for even (solid red) and odd (dashed blue) parity subspaces for
the parameter sets: {ω1, ω2, g1, g2} = {1.3, 0.7, g, g}ω f . The inset shows a crossing in the even
parity spectra of the system at hand. The driven oscillator behavior of the spectra predicted by
perturbation theory can already be seen for couplings twice as large as the transition frequencies
for the lower eigenvalues.

Note that for extremely large values of the coupling parameters g1 and g2, i.e. well into
the DSC regime, the second-order corrections tend to zero and each of the spectral branches
of the two-qubit quantum Rabi model, (7) and (8), tends to the spectra of a forced oscillator.
Figure 1 shows the numerical spectra for the quantum Rabi Hamiltonian expanded in the
parity subspaces spanned by the even, (10), and odd, (11), parity bases defined in the following
section. We consider up to 1000 excitations in the system; i.e. truncated H± matrices given by
(12) of size 1000 with coupling steps of one-hundredth of the field frequency, �g = 0.01ω f .
We show the symmetric off-resonance case, ω1 = 1.3ω f and ω2 = 0.7ω f , with identical
couplings, g1 = g2 = g ∈ [0, 2]ω f . The spectra corresponding to even parity eigenvectors are
presented as the solid red lines and that corresponding to odd parity eigenvectors are shown
as the dashed blue lines. The inset in figure 1 shows an energy crossing in the even spectra
confirmed by the comparison of the proper states before and after the crossing.

We studied a variety of cases not shown here; e.g. random qubit transition energies
ω1, ω2 ∈ [0, 2]ω f with identical couplings g1 = g2 = g or one fixed random coupling
g1 ∈ [0, 2]ω f . In all the cases studied for nonidentical qubits, energy crossings in the spectra
of each parity subspace were the norm and the spectra of the parity subspaces always cross
each other. The fact that energy crossings appear in the parity subspaces marks the deviation
from the expected behavior for the single-qubit quantum Rabi model [21] where the lack
of energy crossings in the spectra of parity subspaces allows each eigenstate to be uniquely
labeled by the excitation number and parity; the ability to label each eigenstate uniquely is
regarded as a criterion of quantum integrability in [21]. Also, in the cases of identical couplings,
g1 = g2 = g, the lower eigenvalue branches already tend to the approximated spectra of two
driven oscillator chains for not-so-large values of the coupling parameters; in the case shown
in figure 1, the first dozen eigenvalue branches already show this behavior for g1 = g2 � 2ω f .

3. Eigenstates of the model

Here we calculate the proper states of the system. For the sake of completeness, we use both
a linear algebra and the Bargmann representation method that lead to four- and five-term
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recurrence relations between the coefficients of the eigenstates, respectively. The eigenstates
provided by both methods are valid for any given coupling parameter value.

3.1. Linear algebra approach

The fact that the model conserves parity allows us to extend the idea of a parity basis used in
the single-qubit Rabi model [6, 7, 17],

{| j〉+} = {|0, g, g〉, |0, e, e〉, |1, e, g〉, |1, g, e〉, |2, g, g〉, |2, e, e〉, . . .}, (10)

{| j〉−} = {|0, e, g〉, |0, g, e〉, |1, g, g〉, |1, e, e〉, |2, e, g〉, |2, g, e〉, . . .}, (11)

with �̂| j〉± = ±| j〉±. The model Hamiltonian (1) in these bases, (H±) j,k = ±〈 j|Ĥ|k〉±, has
block tridiagonal form:

H± =

⎛
⎜⎜⎜⎝

D±
0 O1 0 0 . . .

O1 D±
1 O2 0 . . .

0 O2 D±
2 O3 . . .

...
...

...
...

...

⎞
⎟⎟⎟⎠ , (12)

where the blocks are given by

D±
j =

(
d+

± 0
0 d−

±

)
, Oj =

√
j

(
g1 g2

g2 g1

)
, (13)

with d+
± = jω f ∓ 1

2

[
(−1) jω1 ± ω2

]
and d−

± = jω f ± 1
2

[
(−1) jω1 ± ω2

]
. Note that the matrices

Oj are invertible as long as |g1|2 
= |g2|2. Thus, the eigenstates are written as

|ξ±〉 ∝
∞∑
j=0

v
(±)

j,0 |±, j, g〉 + v
(±)

j,1 |∓, j, e〉, (14)

where we have used the symbol ξ± to emphasize that the proper functions delivered by this
method are valid for any given coupling parameter values. The coefficients can be calculated
up to a normalization factor by the four-term recurrence relations given by

�v(±)

1 = −O−1
1

(
D±

0 − 1ξ±
)
�v(±)

0 , (15)

�v(±)
j = −O−1

j

(
D±

j−1 − 1ξ±
)
�v(±)

j−1 − O−1
j O j−1�v

(±)

j−2, j = 2, 3, . . . (16)

by choosing a suitable �v(±)

0 , with �v(±)
j = (v

(±)

j,0 , v
(±)

j,1 ) and using

O−1
j

(
D±

j−1 − 1ξ±
) = 1√

j(g2
1 − g2

2)

(
g1(d

+
± − ξ±) −g2(d

−
± − ξ±)

−g2(d
+
± − ξ±) g1(d

+
± − ξ±)

)
, (17)

O−1
j O j−1 =

√
j − 1

j
1, (18)

where the symbol 1 is the unitary matrix of dimension 2.
We want to emphasize that keeping track of the relative error is of great importance when

calculating the eigenstates via the recurrence relations given in (15) and (16). A safer approach
is to utilize standard linear algebra diagonalization packages for large sparse matrices.
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3.2. Bargmann representation method

We can follow the procedure presented in [33] with our Hamiltonian model (1). That is, we
use the transformation defined above and, also, move into the basis defined by σ̂ (1)

z . Then, we
use the Bargmann representation method, i.e. making the substitution â → ∂z and â† → z,
where the shorthand notation ∂x has been used to denote partial derivations with respect to x,
to arrive at the Hamiltonian

ĤR =
(

ω f z∂z − ω2
2 σ (2)

x + (
g2σ

(2)
z + g1

)
(z + ∂z) −ω1

2−ω1
2 ω f z∂z − ω2

2 σ (2)
x + (

g2σ
(2)
z − g1

)
(z + ∂z)

)
.

(19)

At this point, we can use the so-called Fulton–Gouterman transformation [21, 33, 38] to reduce
the eigenvalue problem to the form of four coupled differential equations:

[ω f z∂z + g+(z + ∂z) − χ±]φ±
1 − ω2

2
φ±

2 ± ω1

2
φ̄±

2 = 0, (20)

[ω f z∂z + g−(z + ∂z) − χ±]φ±
2 − ω2

2
φ±

1 ± ω1

2
φ̄±

1 = 0, (21)

[ω f z∂z − g+(z + ∂z) − χ±]φ̄±
1 − ω2

2
φ̄±

2 ± ω1

2
φ±

2 = 0, (22)

[ω f z∂z − g−(z + ∂z) − χ±]φ̄±
2 − ω2

2
φ̄±

1 ± ω1

2
φ±

1 = 0, (23)

where we have used the shorthand notation φ±
j ≡ φ±

j (z) and φ̄±
j = φ±

j (−z). Here, we
introduce a deviation from a previous work and take advantage of parity. We use a pair of
Bargmann functions with a well-defined parity, �±

j,± = φ±
j ± φ̄±

j , such that T̂FG�±
j,± = ±�±

j,±,
that yield a coupled differential set

[ω f z∂z − χ±]�±
1,+ + g+(z + ∂z)�

±
1,− − ω2 ∓ ω1

2
�±

2,+ = 0, (24)

[ω f z∂z − χ±]�±
2,+ + g−(z + ∂z)�

±
2,− − ω2 ∓ ω1

2
�±

1,+ = 0, (25)

[ω f z∂z − χ±]�±
1,− + g+(z + ∂z)�

±
1,+ − ω2 ± ω1

2
�±

2,− = 0, (26)

[ω f z∂z − χ±]�±
2,− + g−(z + ∂z)�

±
2,+ − ω2 ± ω1

2
�±

1,− = 0, (27)

that can be solved by the Frobenius method with the power series solutions

�±
1,+ =

∞∑
k=0

c±
2kz2k, �±

1,− =
∞∑

k=0

c±
2k+1z2k+1, (28)

for one of the pairs of even and odd parity Bargmann functions; the coefficients for the other
pair, �±

2,±, are obtained as functions of the coefficients c±
k from (24) and (26). Such an approach

yields a five-term recurrence relation for the coefficients c±
k :

α±
0 (2)c±

2 + α±
1 (2)c±

1 + α±
2 (2)c±

0 = 0, (29)

α±
0 (3)c±

3 + α±
1 (3)c±

2 + α±
2 (3)c±

1 + α±
3 (3)c±

0 = 0, (30)

α±
0 ( j)c±

j + α±
1 ( j)c±

j−1 + α±
2 ( j)c±

j−2 + α±
3 ( j)c±

j−3 + α±
4 ( j)c±

j−4 = 0, j = 4, 5, . . . (31)

6
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with

α±
0 ( j) = j!

( j − 2)!
g+g−[ω1 ∓ (−1) jω2], (32)

α±
1 ( j) = ( j − 1){g−[ω1 ∓ (−1) jω2][( j − 1)ω f − χ±]

+g+[ω1 ± (−1) jω2][χ± − ( j − 2)ω f ]}, (33)

α±
2 ( j) = (2 j − 3)g+g−[ω1 ∓ (−1) jω2] + [ω1 ± (−1) jω2]

×{
1
4 [ω1 ∓ (−1) jω2]2 − [χ± − ( j − 2)ω f ]

2
}
, (34)

α±
3 ( j) = g+[ω1 ± (−1) jω2][χ± − ( j − 2)ω f ] − g−[ω1 ∓ (−1) jω2][χ± − ( j − 3)ω f ],

(35)

α±
4 ( j) = g+g−[ω1 ∓ (−1) jω2]. (36)

For identical qubits, ω1 = ω2 = ω0, the differential set for the H+ block,

(ω f z∂z − χ+)�+
1,+ + g+(z + ∂z)�

+
1,− = 0, (37)

(ω f z∂z − χ+)�+
2,− − ω0�

+
1,− = 0, (38)

(ω f z∂z − χ+)�+
1,− + g+(z + ∂z)�

+
1,+ − ω0�

+
2,− = 0, (39)

(ω f z∂z − χ+)�+
2,+ = 0, (40)

immediately shows us that the Bargmann function φ+
2 (z) has a well-defined odd parity as

equation (40) accepts only the trivial solution �+
2,+(z) = 0. In this case, the five-term

recurrence relations reduce to three-term recurrence relations for the coefficients, where we
have rearranged the coefficients for the sake of simplicity,

c±
j = 1

j

[
α±

j c±
j−1 − (1 − δ1, j)c

±
j−2

]
, j = 1, 2, . . . (41)

α±
j =

[χ± − ( j − 1)ω f ]2 −
[

1±(−1) j

2

]2
ω2

0

g+[χ± − ( j − 1)ω f ]
. (42)

Negative superindex corresponds to the differential set for the H− block,

(ω f z∂z − χ−)�−
1,− + g+(z + ∂z)�

−
1,+ = 0, (43)

(ω f z∂z − χ−)�−
2,+ − ω0�

−
1,+ = 0, (44)

(ω f z∂z − χ−)�−
1,+ + g+(z + ∂z)�

−
1,− − ω0�

−
2,+ = 0, (45)

(ω f z∂z − χ−)�−
2,− = 0 (46)

with �±
1,+ = ∑∞

j=0 c±
2 jz

2 j and �±
1,− = ∑∞

j=0 c±
2 j+1z2 j+1. The coefficients in the three-term

recurrence relations satisfy lim j→∞
α±

j

α±
j+1

= 1.

4. Time evolution

We want to include a way of calculating the exact time evolution in the RWA and show
that numerical solutions for the full quantum problem are simplified by using the parity
bases introduced in (10) and (11). In order to round up our example, we show some typical
measurements on radiation–matter interaction systems; e.g., the mean photon number, n̂,
population inversion, Ŝz = (σ̂ (1)

z + σ̂ (2)
z )/2, von Neumann entropy of the bipartite system,

Ŝ = −ρ̂q ln ρ̂q, and concurrence as defined by Wootters [39, 40].

7
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4.1. Weak coupling

Let us start from the Tavis–Cummings Hamiltonian for two qubits in the frame defined by the
transformation ÛN̂ (t) = e−iω f N̂t :

ĤRWA =
∑
j=1,2

� jσ̂
( j)
z +

∑
j=1,2

g j
(
âσ̂

( j)
+ + â†σ̂

( j)
−

)
, (47)

where the detunings are given by � j = (ω j − ω f )/2. One of us has pointed out somewhere
else [41] that the right unitary transformation,

T̂j =
(

V̂ 0
0 1

)
j

, (48)

diagonalizes the single-qubit Jaynes–Cummings model in the field basis. So, one can use that
transformation for each qubit and obtain

(T̂1 ⊗ T̂2)Ĥsc
(
T̂ †

2 ⊗ T̂ †
1

) = ĤRWA, (49)

with

Ĥsc =

⎛
⎜⎜⎝

�1 + �2 g2
√

n − 1 g1
√

n − 1 0
g2

√
n − 1 �1 − �2 0 g1

√
n

g1
√

n − 1 0 −�1 + �2 g2
√

n
0 g1

√
n g2

√
n −�1 − �2

⎞
⎟⎟⎠ . (50)

It can be shown that the corresponding evolution operator of the system in the RWA is

ÛRWA(t) = (T̂1 ⊗ T̂2) e−iĤsct
(
T̂ †

2 ⊗ T̂ †
1

)
. (51)

This requires just to keep track of the action of (T̂ †
2 ⊗ T̂ †

1 ) over the given initial state in order
to calculate its evolution. It is simple to calculate the exponential because the Hamiltonian Ĥsc

has a depressed quartic as a characteristic polynomial

|Hsc − λI| = c0 + c1λ + c2λ
2 + λ4, (52)

c0 = [
n
(
g2

1 − g2
2

) + �2
1 − �2

2

][
(n − 1)

(
g2

1 − g2
2

) + �2
1 − �2

2

]
, (53)

c1 = 2
(
g2

2�1 + g2
1�2

)
, (54)

c2 = (1 − 2n)(g2
1 + g2

2) − 2
(
�2

1 + �2
2

)
, (55)

with roots

λ1,2 = p ±
√

−p2 − 2c2 − 2c1/p

2
, (56)

λ3,4 = −p ±
√

−p2 − 2c2 + 2c1/p

2
, (57)

and parameters

p =
√

12c0 + (c2 − c)2

3c
, (58)

c = [
1
2

(
q + 27c2

1 − 72c0c2 + 2c3
2

)]1/3
, (59)

q =
√(

27c2
1 − 72c0c2 + 2c3

2

)2 − 4
(
12c0 + c2

2

)3
. (60)

Once the eigenvalues are obtained, it is trivial but cumbersome to calculate the eigenstates of
Ĥsc that allow us to write the evolution operator Û (t).
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4.2. Parity-based numeric approach

In the most general case of any given coupling parameter set, one can approximate results
by adequately truncating the H± matrices in (12) obtained by using the parity bases (10) and
(11). This numerical approach allows us to calculate the time evolution of a general initial
state decomposed in the even and odd parity chain bases, respectively,

|ψ(0)〉+ =
∞∑

n=0

c(+)

4n |2n, g, g〉 + c(+)

4n+1|2n, e, e〉 + c(+)

4n+2|2n + 1, e, g〉 + c(+)

4n+3|2n + 1, g, e〉,

(61)

|ψ(0)〉− =
∞∑

n=0

c(−)

4n |2n, e, g〉 + c(−)

4n+1|2n, g, e〉 + c(−)

4n+2|2n + 1, g, g〉 + c(−)

4n+3|2n + 1, e, e〉

(62)

with the prescription, �c (±)(t) = e−iĤ±t�c (±)(0), where the notation �c (±) corresponds to a
vector of state amplitudes. Any quantity of interest can be calculated from the state above or
the qubit-ensemble-reduced density matrix

ρ̂q =
∞∑

n=0

⎛
⎜⎜⎜⎜⎝

|c(+)

4n+1|2 c(+)

4n+1c(−)∗
4n c(+)

4n+1c(−)∗
4n+1 c(+)

4n+1c(+)∗
4n

c(+)

4n+2c(−)∗
4n+3 |c(+)

4n+2|2 c(+)

4n+2c(+)∗
4n+3 c(+)

4n+2c(−)∗
4n+2

c(+)

4n+3c(−)∗
4n+3 c(+)

4n+3c(+)∗
4n+2 |c(+)

4n+3|2 c(+)

4n+3c(−)∗
4n+2

c(+)

4n c(+)∗
4n+1 c(+)

4n c(−)∗
4n c(+)

4n c(−)∗
4n+1 |c(+)

4n |2

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

|c(−)

4n+3|2 c(−)

4n+3c(+)∗
4n+2 c(−)

4n+3c(+)∗
4n+3 c(−)

4n+3c(−)∗
4n+2

c(−)

4n c(+)∗
4n+1 |c(−)

4n |2 c(−)

4n c(−)∗
4n+1 c(−)

4n c(+)∗
4n

c(−)

4n+1c(+)∗
4n+1 c(−)

4n+1c(−)∗
4n |c(−)

4n+1|2 c(−)

4n+1c(+)∗
4n

c(−)

4n+2c(−)∗
4n+3 c(−)

4n+2c(+)∗
4n+2 c(−)

4n+2c(+)∗
4n+3 |c(−)

4n+2|2

⎞
⎟⎟⎟⎟⎠ . (63)

Figures 2 and 3 present the dynamics in the USC and DSC regimes, respectively. In the USC
regime, it is important to note that the oscillations in the mean photon number, figure 2(a),
and the population inversion, figure 2(b), point to a decomposition in the normal mode basis
involving a high number of components, while the strength of the couplings induces high
values of von Neumann entropy, figure 2(c), and bipartite concurrence, figure 2(d). In the
DSC regime, the well-defined oscillations in the mean photon number, figure 3(a), point to
a localized decomposition in normal modes. The same behavior is seen at a lower timescale
in the population inversion, figure 3(b), which presents a series of oscillations that remind us
of collapse revivals until it localizes in the long time. The quantum correlations between the
qubit–field and qubit–qubit increase and build up in a shorter time with respect to the values
typically found in the weak-coupling regime, but decrease with respect to the USC regime,
figures 3(c) and (d). The increase in the quantum correlations between the field and the qubit
ensemble is expected from the increase in the strength of the interaction between them, but the
peculiar decrease of the qubit–qubit correlations is not expected because individual members
of an ensemble of identical qubits become entangled with one another, thanks to the interaction
with the field mode, cf [42] and references therein. Our results point to the fact that the qubit–
qubit entanglement for an initial separable state diminishes and becomes highly localized in
time with increasing coupling of the field. This may affect the way we design two-qubit gates
in the different regions of the strong-coupling regime.
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Figure 2. The time evolution of (a) mean photon number, (b) population inversion, (c) von Neumann
entropy and (d) bipartite concurrence for a quantum Rabi Hamiltonian with the parameter set
{ω1, ω2, g1, g2} = {1.1, 0.3, 0.3, 0.4}ω f and the initial state |φ(0)〉 = |α, g, g〉 with the coherent
field parameter α = √

2 considering a subspace of up to 1000 excitations.
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Ŝ〈

(b)

(c)

)t(
C

)f
1−ω(units oft )f

1−ω(units oft

Figure 3. The time evolution of (a) mean photon number, (b) population inversion, (c) von Neumann
entropy and (d) bipartite concurrence for a quantum Rabi Hamiltonian with the parameter set
{ω1, ω2, g1, g2} = {1.1, 0.3, 3, 4}ω f and the initial state |φ(0)〉 = |α, g, g〉 with the coherent field
parameter α = √

2 considering a subspace of up to 1000 excitations.

5. Conclusion

Our main results are the following. It is possible to obtain accurate eigenvalues from the
RWA for one coupling parameter value in the USC regime if the other coupling parameter
value is well into the weak-coupling regime or for both coupling parameters by considering
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symmetrical detuning for the qubits. In the DSC regime, we have calculated the eigenvalues
up to the second-order perturbation correction. Well into the DSC regime, the eigenvalues
of the two-qubit Rabi model are described by two forced oscillator spectral series; this is
similar to what happens in the single-qubit case [4, 7]. In the intermediate regime, partitioning
the Hilbert space in even and odd parity subspaces simplifies the numerical calculation of
the eigenvalues. The numerical spectra point to energy crossings within and between each
of the parity subspaces in the USC regime; the case studied in [33] and the case of identical
qubits seem to be exceptions to this characteristic. The crossings within the spectra of parity
subspaces represent different behavior to that of the single-qubit results, where the spectra
branches within each of the parity subspaces do not cross and the parity subspace spectra
cross each other [7, 21]. During the reviewing period, it has been pointed out that such
crossings may appear for the Dicke model describing three identical qubits [43]. We have
obtained the normal modes for the two-qubit Rabi model by linear algebra methods via parity
subspaces as four-term recurrence relations for the coefficients of the eigenstates; in the case
of identical couplings, the linear system becomes singular and we cannot provide an analytical
solution; nevertheless, it is possible to obtain numeric solutions for this particular case. In
the Bargmann representation, we find that the recurrence relations for the continued proper
function coefficients are of five terms and reduce to three-term recurrence relations in the
case of identical qubits; additionally, for identical qubits, one of the proper functions has a
well-defined parity. We also extend an algebraic approach to find the evolution operator of
the system in the RWA. Finally, we wanted to show how powerful the parity decomposition
is by calculating the time evolution of quantities related to the degree of entanglement in the
ensemble–field and qubit system for a simple initial state of the qubits in their ground state
and the field in a coherent state with two photons on average in the USC and DSC regimes,
respectively. We show that while qubit ensemble–field quantum correlations increase with
an increasing coupling parameter, qubit–qubit entanglement measured by the concurrence
diminishes and localizes in regions of the time evolution.
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