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Abstract: Analytical expressions for the normalized transmittance of a thin 
material with simultaneous nonlocal nonlinear change in refraction and 
absorption are reported. Gaussian decomposition method was used to obtain 
the formulas that are adequate for any magnitude of the nonlinear changes. 
Particular cases of no locality are compared with the local case. 
Experimental results are reproduced (fitted) with the founded expressions. 
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1. Introduction 

The Z-scan technique, proposed by Sheik-Bahae et al. [1,2], is a widely used method to 
evaluate the real and imaginary parts of the nonlinear refractive index of optical materials. In 
this technique the far field intensity is measured as a function of the sample position. Two 
detection schemes are mainly used in this technique, one called closed aperture (to determine 
the nonlinear refraction) and the open aperture (to measure the nonlinear absorption). The 
transmittance, after a thin sample that is illuminated by a Gaussian beam, can be analytical 
calculated using different methods as: Gaussian decomposition (GD) [3], Fast Fourier 
Transform [4], Huygens-Fresnel principle [5], Kirchhoff-Fresnel diffraction theory [6], 
Hermite-Gauss decomposition [7], solving the paraxial wave equation [8], etc. GD analytical 
expressions for the normalized transmittance have been obtained for: weak nonlinearities in 
thin local Kerr media [2,9], high order refractive nonlinearities [5], large phase shifts [10]. 
Analytical expressions for the z-scan transmittance have also been obtained for large phase 
shifts using the Huygens-Fresnel principle [11]. However, numerical tools frequently require 
to obtain the normalized transmittance for nonlinear materials that present large refractive 
phase shifts [6,10], high order refractive nonlinearities [12] and for large nonlinear phase 
shifts with simultaneous third- and fifth-order refraction [13]. Influence of the multiphoton 
absorption process in a refractive Kerr media was analyzed by Gu et al. [14]. Recently a 
model to describe the z-scan curves for thin nonlocal nonlinear media with pure refractive 
nonlinearity was presented [15]. Based on such model experimental results have been 
adjusted, with a very good correspondence, for materials that present a purely refractive 
nonlinearity [15,16]. However, no analytical formulas for the z-scan transmittance have been 
proposed for thin nonlocal media with any magnitude of the nonlinear phase shift. 

In this paper we obtain analytical formulas for the z-scan transmittance for thin materials 
that present a nonlocal refractive and absorptive nonlinearity. As in [15], an incident Gaussian 
beam was considered in order to calculate the output field after the sample, where the 
nonlocality of the material is taken into account through a single parameter m. GD was used 
to calculate the transmittance at far field and to obtain the analytical formulas without any 
restriction in the magnitude of the nonlinear phase shift. Z-scan curves for local and nonlocal 
special cases are compared. Experimental results of a material that present both nonlinear 
refraction and absorption are adjusted with the obtained formulas for a single value of m. 
Finally the conclusions are given. 

2. Theoretical model 

Consider a Gaussian beam propagating in the z direction with waist w0, wavelength λ, 
Rayleigh range z0 = πω0

2/λ and the following field amplitude: 

 
2 2

0
0 2

( , ) exp exp ( )
( ) 2 ( )( )

r r
E r z A ikz ik i z

z R zz

ω ε
ω ω

   
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where: A0 is a constant amplitude, k = 2π/λ,
1/22

0 0( ) 1 ( / )z z zω ω  = +  the beam width, 

2
0( ) 1 ( / )R z z z z = +   the radius of curvature of the wavefront and 1

0( ) tan ( / )z z zε −=  the 

Gouy phase retardation relative to a plane wave. 
This beam is transmitted through a Kerr nonlinear optical material of length L, with a 

refractive index and absorption coefficient given by [2]: 

 0( ) ,n I n Iγ= +  (2) 

 0( ) ,I Iα α β= +  (3) 

where: n0 is the linear refractive index, γ the nonlinear refractive coefficient, α0 the linear 
absorption coefficient and β the nonlinear absorption coefficient and I is the light intensity. 

The output field for a thin local media is given by [17]; 

 ( / 1/2)
0( , ) exp( / 2)(1 ) ,ik

outE E r z L q γ βα − −= − +  (4) 

where, q = βILeff, Leff = (1-exp(-α0L))/α0, I0 = |A0|
2 is the on-axis intensity at the waist. The 

irradiance distribution and phase shift of the beam at the exit surface of the sample must 
fulfill: 

 0( , ) exp( )
( , )

1 ( , )out

I z r L
I z r

q z r

α−
=

+
 (5) 

and 

 ( ) ln[1 ( , )].k q z rφ γ βΔ = +  (6) 

The intensity I can be expressed, at position z, as the product of the maximum on axis 
value I0 and a Gaussian local profile (Gloc): 

 ( ) 0, ,locI r z I G=  (7) 

with 

 
( )

( )
exp[- ]

= .
( )

2 2

loc 2

0

2r w z
G

1+ z z
 (8) 

In [18], it was proposed that the field after a nonlocal sample that presents solely nonlinear 
refraction, the photoinduced nonlinear phase change Δφ can be written as: 

 ( ) 2
0ΔΦ ,m

m locr GφΔ =  (9) 

where m can be any real positive number. A value of m = 2 considers (local case) that the 
nonlinear phase changes follows the incident intensity. Other values of m (nonlocal cases) 
give broader (m<2) or narrower (m>2) nonlinear phase changes. In that paper was 
demonstrated that Eq. (9) describes fairly well far field intensity distributions obtained for 
spatial self-phase modulation and Z-scan curves. 

Assuming that for a nonlocal material that presents nonlinear absorption Eq. (6) must also 
be fulfilled in the limit of β→0 Eq. (8) must be satisfied. Then it is necessary to consider that 
q takes the following form; 

 ( ) 2
0ΔΨ ,m

m locq r G=  (10) 

note that this expression is reduced to that of the local case when m = 2. 
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The field at the exit surface of the sample, under the thin sample approximation and a 
spatially nonlocal nonlinearity in materials that have both refractive and absorptive nonlinear 
responses, is given by: 

 ( ) ( ) ( )( )0 0ΔΦ ΔΨ 1 22
0 0, exp 2 1 ΔΨ .

im
out locE E r z L Gα

− −
 = − +   (11) 

3. Numerical results 

 

Fig. 1. Z-scan curves for closed (a) and open (b) -aperture with ΔΦ0 = −1 rad. and ΔΨ0 of: 0.3 
(red line), 0.0 (black line) and −0.3 (blue line). 

In this section the far field intensity is numerically calculated, from the Fraunhofer integral of 
Eq. (11), for different values of m to obtain curves for the closed- or open-aperture Z-scan 
cases. We consider a thin nonlinear sample (of length L = 1x10−3 m), with a linear absorption 
coefficient α0 = 1x10−1 m−1 and illuminated with a Gaussian beam of w0 = 20 µm at λ = 633 
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nm. Figure 1 shows the results obtained for closed (a) and open (b) -aperture Z-scan curves 
for different values of the m parameter, with ΔΦ0 = −1 rad., and ΔΨ0 values of: 0.3 (red), 0.0 
(black) and −0.3 (blue). To simulate a strong nonlocality (a material were the spatial 
extension of the phase changes is larger than the illuminated area) we used m = 1, and to 
simulate a weak nonlocality (a material where the spatial extension of the phase changes is 
smaller than the illuminated area) we used m = 4. For the closed aperture z-scan curves we 
can see that the peak (valley) transmittance decreases as the parameter m increases. The same 
dependence is observed for the peak (valley) in the open aperture z-scan curves. The width of 
the peak (valley) obtained in the open aperture z-scan curves decreases as the parameter m 
increases. 

In order to see clearly the influence of the nonlocality in the z-scan curves, in Fig. 2 we 
plot the closed (a) and open (b) -aperture z-scan curves using the same values of ΔΦ0 = −1 
rad., ΔΨ0 = −0.3, with m values of: 1 (red line), 2 (black line) and 4 (blue line). Under these 
conditions, for the closed aperture z-scan curves, the changes in the amplitude of the peak are 
larger than the valley. For the open aperture z-scan curves the amplitude and width of the 
peak decreases as the parameter m increases. 

 

Fig. 2. Z-scan curves for closed (a) and open (b) – aperture with ΔΦ0 = −1 rad., ΔΨ0 = −0.3 and 
m of 1(red line), 2(black line) and 4(blue line). 

4. Analytical expressions 

We use GD method in order to derive analytical expressions for the on axis far-field 
transmittance. According to this treatment the complex electric field at the exit plane of the 
sample is decomposed into a sum of Gaussian beams, with decreasing waist dimensions, 
through a Taylor series expansion of the photoinduced phase shift. Each individual Gaussian 
beam is propagated far away from the sample and finally all these beams are summed to 
reconstruct the far field pattern of the resulting beam at the aperture plane. The binomial 
series of the exiting electric field is: 
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the complex electric field at the aperture plane, were the Gaussian beam will be reconstructed, 
can be written as; 
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where Δφ0 = ΔΦ0/[1 + (z/z0)
2]m/2. When it is only considered the refractive response, ΔΨ0 = 0, 

Eq. (13) is reduced to: 
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If d is the propagation distance from the sample to the aperture and g = 1 + d/R(z), the 
remaining parameters of (14) are expressed as: 
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In order to obtain the transmittance, the on axis electric field at the aperture plane is 
obtained making r = 0 in (14). The normalized transmittance can be written as: 
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0 2
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( 0, ,Δ )
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Under the far field condition d>>z0, the normalized transmittance for the N-order can be 
obtained numerically through the next expression: 
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n x i mnx=

 ΔΦ  +ΔΦ =   + ++ 
  (16) 

where x = z/z0. In Fig. 3, the peak–valley separation distance and peak–valley transmittance 
difference are plotted as functions of the m parameter for ΔΦ0 = −0.5π, -π and −4π rad. We 
can observe that until ∆Φ0 = -π rad., the peak–valley separation distance follows the behavior 
obtained for small on-axis nonlinear phase shifts. However for ∆Φ0 = - 4π rad. the curve 
present sudden changes, for values of m > 2.2 the separation decreases smoothly. The peak–
valley transmittance difference curves follow a similar behavior to that obtained for a small 
phase shift. For ∆Φ0 = −4π rad. there is a maximum of 5.9 at m = 0.5 and the transmittance 
difference decays in a fast way for larger m values. All these numerical results are consistent 
with that showed in [15]. The results obtained with Eq. (16) will be approximate to that 
obtained with the full propagation of the exit field as the N value increase. We found 
numerically that for phase changes of the order of π at least N = 20 is needed. 
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Fig. 3. Δzp-v (a) and ΔTp-v (b) as a function of the m obtained from evaluation of Eq. (16) with 
N = 20 and ΔΦ0 = −0.5π rad. (dotted), ΔΦ0 = -π rad. (dashed line) and ΔΦ0 = −4π rad. (solid 
line). 

Taking into account until the second order in ΔΦ0 of Eq. (16) we obtain the following 
expression for the transmittance: 

 
( ) ( ) ( )

2 2
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0 2 22 2 222 2 2
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(17) 

In Fig. 4 it is plotted Eq. (17) with ΔΦ0 = −0.5 rad. for values of m = 1, 2 and 4. As it can 
be observed with the same on-axis nonlinear phase shift the curves amplitude decrease as m 
increase. In Fig. 5 the peak–valley separation distance and peak–valley transmittance 
difference are plotted as functions of the m value for ΔΦ0 of −0.5 rad. and −1 rad.. The Δzp-v 
and the ΔTp-v values predicted for the local case (m = 2) and the thermal case (m≈1) [11], are 
achieved when the phase change is small enough |ΔΦ0|<<1 rad. When we consider |ΔΦ0| 
values of the order of 1 rad., Eq. (17) is still valid since Δzp-v values decreases only slightly, 
however if the maximum phase change is bigger than 1 rad. it is necessary to take into 
account more terms in Eq. (16). 

 

Fig. 4. Closed-aperture Z-scan curves obtained from Eq. (17) with ΔΦ0 of −0.5 rad. and m 
parameter of: 1 (red line), 2 (black line) and 4 (blue line). 
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Fig. 5. Results from Eq. (17) for Δzp-v (a) and ΔTp-v (b) as functions of the m parameter for ΔΦ0 
= −0.5 rad. (dashed line) and ΔΦ0 = −1 rad. (solid line). 

In order to obtain simultaneously the absorptive and refractive effects we have to consider 
the field described in (12), to find the on axis transmittance at far field; 

 
2

0 0
0 0 2 2 2

2 ( ( 1))
( , , ) 1 .

( ( 1) )( 1)

m x m
T z

x m x

ΔΦ + ΔΨ + +
ΔΦ ΔΨ = +

+ + +
 (18) 

In Fig. 6, the Z-scan curves for a sample with ΔΦ0 = - 0.1 rad. and ΔΨ0 = −0.02 rad. are 
plotted for different values of the m parameter. As can be seen, for all the m values the closed-
aperture transmittance curves have lost their symmetry an effect that occurs when the 
absorptive nonlinearity comes to play a role. 

 

Fig. 6. Closed-aperture Z-scan curves for an on-axis nonlinear phase shift of ΔΦ0 = −0.1 rad., 
ΔΨ0 = −0.02 and m values of: 1 (red line), 2 (black line) and 4(blue line). 

The effect of decreasing the peak and enhancing the valley, in comparison of a purely 
refractive case, is not only due to nonlinear absorption, the nonlocal response of the sample 
has a similar effect. 
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The transmittance for the open aperture z-scan can be obtained integrating Eq. (5) [2]. In 
our case the following expression was obtained: 

 0
0

0

ln[1 ( )]
( , ) ,

( )m

q z
T z

q z

+
ΔΨ =  (19) 

where q0(z) = ΔΨ0/[1 + (z/z0)
2]m/2. Figure 7 shows the open aperture case for ΔΨ0 = 0.05 and 

different values of the m parameter. In this case the amplitude of the valley is the same for all 
m values but the width clearly depends on the nonlocality 

 

Fig. 7. Open-aperture Z-scan curves with ∆Ψ0 = 0.05 and m values of: 1 (red line), 2 (black 
line) and 4 (blue line). 

Analytical expressions (16) and (19) can be used to fit experimental data. When the beam 
waist, w0, of the Gaussian beam is known the m parameter is the fitting parameter. 

5. Experimental results fitting 

Experimental z-scan curves were obtained with a green brilliant sample (C27H34N2O4S) [19]. 
CW illumination from a helium neon laser at 633nm was used, the laser beam was focused by 
a convergent lens of 3.5 cm of focal length getting a beam waist of 18μm. The sample was 
deposited in a 1 mm width quartz cell and moved on axis direction around the lens focus by a 
computer-controlled servo motor. The transmitted light was measured; through on axis small 
aperture (1 mm radius) at far field located 1 m away of the lens, or without aperture by a 
photo-detector, as function of the sample position to obtain the closed- or open-aperture z-
scan curves. In Fig. 8 experimental and numerical results for the closed- and open-aperture Z-
scan curves are showed for laser powers of: 1 mW (*), 3 mW (o) and 5 mW ( + ). The closed-
aperture Z-scan curves are asymmetric, exhibit a negative nonlinear refractive index and the 
amplitude of the Z-scan curves grew with the incident power. The Δzp-v value range from 3 
mm to 3.3 mm (2 to 2.1 z0), and ΔTp-v values are ranging from 0.2 to 0.9. The open-aperture 
curves are also asymmetric, exhibit a negative nonlinear absorption coefficient and the 
amplitude of the curves are ranging from 0.04 to 0.07. The numerically calculated Z-scan 
curves with Eqs. (15) and (18), are shown in continuous lines with m = 0.9 and ΔΦ0 of: 
−0.12π rad. for 1 mW, −0.4π rad. for 3 mW and −0.6π rad. for 5mW curve in the closed-
aperture case. For the open-aperture case ΔΨ0 is: −0.09 for 1mW, −0.105 for 3mW and −0.12 
for 5mW. From the previous results we can say that the nonlinearity exhibited by the sample 

(C) 2014 OSA 17 November 2014 | Vol. 22,  No. 23 | DOI:10.1364/OE.22.027932 | OPTICS EXPRESS  27940
#224312 - $15.00 USD Received 2 Oct 2014; accepted 15 Oct 2014; published 4 Nov 2014



was negative of thermal type. The nonlinear absorption coefficient, β, was negative with a 
magnitude of the order of −0.038 cm/W that depended on the incident power, but the 
difference was not large. 

 

Fig. 8. Experimental (symbol) and numerical (lines), a) closed- and b) open-aperture Z-scan 
curves for incident power of: 1 mW(red), 3 mW(magenta) and 5 mW(blue). 

6. Conclusions 

An extension of the nonlocal model for materials with simultaneous nonlinear refractive and 
absorptive contributions was described. Two simple expressions for the on axis intensity 
(closed aperture) and total transmitted power (open) were derived following the Gaussian 
decomposition method for any magnitude of the nonlinear contributions. Evaluation of the 
formulas for different cases was presented. Experimental results of a sample that presents 
both nonlinear refraction and absorption were obtained for the closed- and open-aperture Z-
scan. The experimental results were fitted with a nonlocal parameter m = 0.9, obtaining 
excellent agreement between theory and experiment. 
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