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1. INTRODUCTION
The light scattering in a two-mode optically transparent
medium modulated by a relatively slow nonoptical wave dem-
onstratesanexampleof theparametricprocess inasystemwith
square-law nonlinearity [1,2]. This phenomenon allows for
originating a family of multiwave solitary states and solitons,
whose field components canbephysically distinct fromone an-
other, but these components are parametrically coupled [3].
The investigations of acousto-optical interaction using waves
of finite amplitude in liquids have been carried out at first in
the late 1950s [4,5]. While in solids, these studies have their
roots in the 1970s within experimental verification of the
Brillouin diffraction theory at very high acoustic frequencies
in leadmolybdate [6]. Asymmetric light scatteringbyultrasonic
pulses has been also studied [7]. Further, efforts have been
made to describe the light diffraction byultrasonic pulses using
both analytical and numericalmethods [8]. Later, the studies of
collinear acoustic-optic interaction have shown the depend-
ence of the transmission function on the amplitude of acoustic
wave in a specific continuous-wave [9] andpulsed regimes [10].
Even up to now, the acousto-optic interaction occurred by
ultrasonic waves of finite amplitude in liquids is under investi-
gation [11]. Together with this, multiwave coupled states in
lossless two-mode media had been studied [12,13]. The next
step in our investigations had been done within theoretical
analysis and experiments related to dissipative solitary waves
[14], namely, to collinear three-wave coupled states in a me-
diumwith nonoptical losses [15]. Now, in contrast to all the pre-

vious considerations, a new specific regime with lossless slow
nonopticalwave, butwithoptical losses is extracted for consid-
eration. In so doing, the Bragg light scattering by acoustic
waves of finite amplitude in a two-mode medium exhibiting
linear optical losses is elucidated. We develop a new quasi-
stationary analytical model describing the localized coupled
states with various pulse profiles that includewhat is essential:
the phase mismatches. Attention is paid to cnoidal profiles of
the localized weakly coupled states. In particular, two limiting
cases for cnoidal profiles associated with infinite support (i.e.,
hyperbolic secant function) as well as with compact support
(i.e., rectangular one)of acousticwaveare considered indetail,
numerically estimated, and characterized graphically. In prac-
tice, thepresenceof the linearoptical losses inamediumaffects
identifying the optical components in the experiments with
weakly coupled acousto-optical states. Finally, we present
the exploited experimental setup and the data obtained due
to proof-of-principle experiments directed to observing the op-
tical components of dissipative three-wave weakly coupled
acousto-optical states with the phasemismatch in the specially
designed collinear AOC made of the x-ray irradiated α-quartz
crystal providing the given optical losses.

2. THREE-WAVE INTERACTION WITH THE
PHASE MISMATCHES AND LINEAR
OPTICAL LOSSES
Let us start from a three-wave codirectional collinear interac-
tion with the mismatched wave numbers in a two-mode
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medium, which is described by a set of three nonlinear partial
differential equations [12]. Here, we consider the regime of so-
called weak coupling [15], when two light modes are scattered
by a relatively slow acoustic wave of finite amplitude, exhib-
iting practically negligible linear losses, when essentially ef-
fective Bragg scattering of light can be achieved without
any observable influence of the scattering process on that
acoustic wave. Then the velocities of light modes can be ap-
proximated by the same value c because usually the length of
crystalline materials does not exceed 20 cm. In this regime,
the above-mentioned set of equations falls into an equation
for the complex amplitude u�x; t� of a slow acoustic wave
(V is the group velocity of this wave) and a pair of the com-
bined equations for the complex amplitudes a0�x; t� and
a1�x; t� of the incident (pumping) and scattered light waves,
respectively:

∂u
∂x

� 1
V
∂u
∂t

≈ 0; (1a)

∂a0
∂x

� α0a0 �
1
c
∂a0
∂t

� −q1a1u exp�2iηx�; (1b)

∂a1
∂x

� α1a1 �
1
c
∂a1
∂t

� q0a0u� exp�−2iηx�; (1c)

where q0;1 are the constants of interaction, 2η is the mismatch
of wave numbers inherent in the interacting waves, and the
factors α0;1 describe the linear losses of optical waves. One
can put α0 ≈ α1 ≈ α because the frequency shift between opti-
cal modes equals to the acoustic frequency (∼108 Hz), which
is much smaller than the optical frequencies (∼1015 Hz). The
general solution to Eq. (1a) with the boundary condition
u�x � 0; t� � U�t� has the form U �t − �x∕V��. The reduction of
Eqs. (1b) and (1c) is physically motivated by obvious incom-
mensurability between the group velocities of acoustic and
two optical waves. One can estimate the summands in the
left-hand sides supposing that the interaction takes place only
in a limited space area X occupied by an acoustic pulse. The
first summands can be estimated by the ratio ∂a0;1∕∂x ≈ A∕X ;
the second summands describe the optical losses representing
rather slow process, so that αa0;1 < A∕X , where A is some
amplitude. The third summands lead to c−1 · ∂a0;1∕∂x≈
�V∕c��A∕X�, which means that these terms are the smallest
ones in these expressions, and they can be omitted. Thus
Eqs. (1b) and (1c) can be reduced down to

∂a0
∂x

� αa0 � −q1a1U �t − �x∕V�� exp�2iηx�; (2a)

∂a1
∂x

� αa1 � q0a0U��t − �x∕V�� exp�−2iηx�: (2b)

Equations (2) include the dependence on time and allow the
following relation J2�x� � J2

0 exp�−2αx�, where J2
0 � J2�x �

0� and J2�x� � q0ja0j2 � q1ja1j2. At this step, one can use
the substitution a0;1 � f 0;1�x; t� · exp�−αx� to convert Eq. (2)
to

∂2f 0
∂x2

−

�
2iη�

�
1
U

��
∂U
∂x

��
∂f 0
∂x

� q0q1jU j2f 0 � 0; (3a)

∂2f 1
∂x2

−

�
−2iη�

�
1
U�

��
∂U�

∂x

��
∂f 1
∂x

� q0q1jUj2f 1 � 0 (3b)

with q0jf 0j2 � q1jf 1j2 � q0J2
0 − const. The functions f 0;1�x; t�

and U�x; t� are arbitrary at this step, so that formally one
can analyze Eq. (3) from various viewpoints; however, even
partial solution to Eq. (3) with an arbitrary function U�x; t�
is unknown [16]. This is why Eq. (3) can be considered from
two different sides.

A. Approach from U�x�
At the first step, one can resolve Eq. (3) relative to the func-
tions U�x� and U��x�:

∂U
∂x

�
�
2iη −

∂2f 0
∂x2

�
∂f 0
∂x

�
−1
�
U − q2f 0

�
∂f 0
∂x

�
−1
UjUj2 � 0; (4a)

∂U�

∂x
�

�
−2iη −

∂2f 1
∂x2

�
∂f 1
∂x

�
−1
�
U�

− q2f 1

�
∂f 1
∂x

�
−1
U�jUj2 � 0;

(4b)

where q2 � q0q1. Algebraic manipulations with Eqs. (4) give a
pair of Bernoulli equations for jUj2 expressed in terms of the
functions f 0;1�x; t�, which have general solutions:

jUj2 �
�
∂f 0
∂x

��
∂f �0
∂x

�
× �C0 − q2f 0f �0 �−1

�
�
∂f 1
∂x

��
∂f �1
∂x

�
× �C1 − q2f 1f �1 �−1: (5)

Here, C0;1 are the complex-valued integration constants. Now
one can substitute jUj2 into the last terms of Eqs. (4) and re-
solve them relative to U�x� or U��x�, so that, for example,

U�x� � CU

�
∂f 0
∂x

�

× exp
�
−2iηx� q2

Z
f 0

�
∂f �0
∂x

�
× �C0 − q2f 0f �0 �−1dx

�
;

(6)

where CU is the complex-valued integration constant. This
approach gives an opportunity to choose desirable complex-
valued profiles of the slow acoustic waveU�x� to growweakly
coupled acousto-optical states of the given shapes.

Let us consider two examples of not quite conventional pro-
files for acoustic components of the coupled states with some
phase mismatches. One of these examples is the Gaussian pro-
file f 0�x� � B exp�−bx2� exp�ip0x�, where the constants B
and b describe the amplitude and width, respectively, of this
profile. With C0 � B2q2�1� �p20∕b2�� and p0 � 2η, Eqs. (5) and
(6) give us

jUj2 � 4b2�η2 � b2x2�
q2��b2 � 4η2� exp�2bx2� − b2� ; (7a)

954 J. Opt. Soc. Am. B / Vol. 31, No. 5 / May 2014 Shcherbakov et al.



U�x� � 2BCU �iη − bx�

× exp
�
−bx2 � 2

Z �bx� iη�dx
1 − exp�2bx2 · f1 − �4η2∕b2�g�

�
:

(7b)

The second example represents the Jacobi elliptic function

f 0 � Bcn�bx;m� · exp�ip0x�; (8)

where m is the elliptic modulus �0 ≤ m ≤ 1�. With C0 �
B2q2�1� �p20∕b2�� and p0 � 2η, Eq. (5) gives

jUj2 �
�
b2

q2

�
4η2cn2�bx;m� � b2dn2�bx;m�sn2�bx;m�

4η2 � b2sn2�bx;m� : (9)

Varying the elliptic modulus m, one can obtain either trigono-
metric or hyperbolic function realizations:

jUj2 �
�
b2

q2

�
·
4η2 cos2�bx� � b2 sin2�bx�

4η2 � b2 sin2�bx� ; m � 0; (10a)

jUj2 �
�
b2

q2

�
sech2�bx��4η2 � b2tanh2�bx��

4η2 � b2tanh2�bx� ; m � 1:

(10b)

When p0 � 2η � 0, one yields

jUj2 �
�
b2

q2

�
� const; with m � 0; (11a)

jUj2 �
�
b2

q2

�
· sech2�bx�; with m � 1: (11b)

In its turn, Eq. (6) gives U�x� in all these cases. Thus in the
general case, Eqs. (3), (8), and (10) with p0 � 2η serve as
a good illustration to the approach presented. However,
because the general solution to Eq. (3) is unknown [16],
the effect of mismatches can be followed only in the particular
cases.

B. Approach from f 0;1�x�
At the second step, we take the specific form of the function
U�x� with the stationary phase and put U � U0 exp�iφ�,
where U0 is the real-valued amplitude, while the phase φ is
a constant. As a result, Eq. (3) will be converted to

∂2f 0;1
∂x2

−

�
�2iη�

�
1
U0

��
∂U0

∂x

��
∂f 0;1
∂x

� q2U2
0f 0;1 � 0: (12)

A similar selection of the function U�x�, which excludes the
contribution of mismatches, looks more practical from the
viewpoint of experimental realization and gives an opportu-
nity to investigate the effect of mismatches on the light fields
f 0;1�x� and clarify their contributions in the efficiency of
localization.

1. Hyperbolic-Secant Shape Acoustic Pulse
Let us take an analytic function U0 with infinite support,
namely, a hyperbolic-secant shape acoustic pulse of unknown

amplitudeH and the inversed duration σ, so that the boundary
conditions (and localization conditions as well) have to be for-
mulated for infinite distance. The phase parameter should be
zero due to U0 is the real-valued. Thus, with U0 � H sech�σx�,
Eq. (12) for the function Y 0 ≡ f 0, i.e., with upper sign in the
squared brackets, can be rewritten as

∂2Y 0

∂x2
� �−2iη� σ tanh�σx�� ∂Y 0

∂x
� q2H2 sech2�σx� · Y 0 � 0:

(13)

A project for the first exact solution (for the scattered light
wave) to this equation can be taken as

y0 � B sech�Bx� · exp�ip0x�; (14)

where the amplitude and inversed duration B, and phase
parameter p0 are unknown. Substituting Eq. (14) into Eq. (13),
one can find that Eq. (13) will be exactly satisfied if p0 � 2η
and σ � B � qH. By this it means that the function f 0 includes
the initially inserted phase mismatch η, while the amplitude of
light pulses as well as their inversed durations are determined
by the acoustic pulse amplitudeH and properties of a material
via the factor q. Thus Eq. (14) represents a partial solution y0
to Eq. (13), and one can try to find the general solution to
Eq. (13) [16] in the form

Y 0 � Z�0�
1 σ sech�σx� · exp�2iηx� � Z�0�

2 ·
2iη� σ tanh�σx�

σ�σ2 � 4η2� ;

(15)

where Z�0�
1;2 are the integration constants. The function Y 1 ≡ f 1

has the form similar to Eq. (15), but with the opposite sign of η
and the integration constants Z�1�

1;2. Exploiting the conservation
law jY 0j2 � jY 1j2 � J2

0 with the boundary conditions
jY 0j2�x → �∞� � 0 and jY 1j2�x → �∞� � J2

0, one can obtain

jY 0j2�x� �
J2
0σ

2

σ2 � 4η2
sech2�σx�; (16a)

jY 1j2�x� � J2
0 ·

4η2 � σ2 tanh2�Ax�
σ2 � 4η2

: (16b)

Additionally, one can say that the initially chosen function
U0 � q−1σ sech�σx� exhibits the simplest example of localiza-
tion, i.e., a one-pulse weakly coupled state, with infinite sup-
port for the amplitude U0.

2. Rectangular Acoustic Pulse
Here, we choose the amplitude U0 in the form of a generalized
function with compact support. Namely, a solitary rectangular
pulse is taken, so that the available distance of localization is
physically restricted by this pulse width. Now both the boun-
dary conditions and the localization conditions have to be for-
mulated for a limited distance due to a compact support of the
amplitude U0. The real-valued amplitude function can be ex-
pressed as U0 � H rect�x∕L0�, where rect�ξ� � 1 only when
jξj ≤ 1∕2, and rect�ξ� � 0 when jξj > 1∕2, so that the compact
support is restricted by the interval �−L0∕2; L0∕2�. As a result,
Eq. (12) can be rewritten as

Shcherbakov et al. Vol. 31, No. 5 / May 2014 / J. Opt. Soc. Am. B 955



∂2f 0;1
∂x2

∓2iη
∂f 0;1
∂x

� σ2f 0;1 � 0 (17)

only in an area inside this acoustic pulse, i.e., inside the
chosen localization distance where σ2 � q2H2. For the area
lying outside of that acoustic pulse, the acousto-optical inter-
action is absent, and the localization conditions have to be
formulated only within that area. The exact general solution
to Eq. (17) is given by

f 0;1 � P0;1 exp
�
ix
�
�η −

����������������
σ2 � η2

q ��

� Q0;1 exp
�
ix
�
�η�

����������������
σ2 � η2

q ��
; (18)

where P0;1 and Q0;1 are the complex-valued integration con-
stants. The intensities jF0;1j2 of light waves inside the acoustic
pulse can be expressed as jF0;1j2 ≡ jf 0;1j2 in this case. Thus
one can require jF0j2�x � 0� � J2

0, jF1j2�x � 0� � 0 and find

jF1j2 �
J2
0σ

2

σ2 � η2
· sin2

�
x

����������������
σ2 � η2

q �
; (19a)

jF0j2 � J2
0

�
η2

σ2 � η2
� σ2

σ2 � η2
· cos2

�
x

����������������
σ2 � η2

q ��
: (19b)

Due to Eq. (19) being valid only inside the finite interval of
existing the acoustic pulse, one may discuss localization only
relative to a compact support for the amplitude function
U0 � q−1σ rect�x∕L0�, which restricts an area of realizing
the acousto-optical interaction. Physically, the solutions, de-
scribed by Eqs. (16) and (19), involve contributions of two
types. For the incident light, one can identify first the contri-
bution of some backgrounds, which are independent on the
coordinate x, and then some oscillating portions of the solu-
tions, describing localization of the incident light. These
oscillating portions are imposed on the corresponding back-
grounds, whereby just the existence of joint angular-
frequency mismatch η as well as its magnitude determines
the value of those backgrounds.

3. SUPPORT OF SOLITARY PROFILES
INHERENT IN WEAKLY COUPLED STATES
The Jacobi elliptic functions are doubly periodic functions
whose primitive periods ratio is not real [17]. In particular,
the periodicity is characterized by 4KN � 2iK 0M for
sn�z;m�, 4KN � 2�K � iK 0�M for cn�z;m�, and 2KN �
4iK 0M for dn�z;m�. Here, K�m� is complete elliptic integral
of the first kind, and K 0�m� � K�m0� with m0 � 1 −m, while
N; M � 0;�1;�2;… [18]. These functions are real-valued for
real argument z and real modulusmwhen 0 ≤ m ≤ 1. Initially,
we restrict ourselves by a pair of the factors (N � 1, M � 0)
and consider the functions dn�z;m� (see Fig. 1), sn2�z;m�,
and cn2�z;m� (see Fig. 2) within their first primitive period
determined by 2K�m�. Mathematically trivial variation of their
periods from π to infinity as m grows from zero to unity ac-
quires specific physical meaning. The plots in Figs. 1 and 2
demonstrate that when N � 1 and M � 0, the interval
�−K�m�; K�m�� can be considered as the complete interval
of existing the support for cnoidal solitary profiles, and this
interval of existing the support is a function of the modulusm.

In particular, Fig. 1 demonstrates the evolution of the cnoi-
dal acoustic pulse profile jU�z�j � dn�z;m�, i.e., the conver-
sion of a rectangular distribution dn�z; 0� at the compact
support �−K�0� � −π∕2; K�0� � π∕2� to a hyperbolic profile
dn�z; 1� � sech�z� with infinite support, because of
K�1� → ∞. The same behavior demonstrates the cnoidal light
intensity profiles sn2�z;m� and cn2�z;m� (see Fig. 2) evolving
from trigonometric profiles jf 1j2�z� � sin2�z�, jf 2j2�z� �
cos2�z� with m � 0 and compact support z ∈ �−π∕2; π∕2� to
hyperbolic profiles jf 1j2�z� � tanh2�z�, jf 2j2�z� � sech2�z�
with m � 1 and infinite support z ∈ �−∞;∞�. In other words,
this explanation represents an alternative view on determin-
ing the conditions of localization. Namely, traditionally ex-
ploited infinite distance of localization corresponding to
infinite support for solitary profiles such as Gaussian or hyper-
bolic ones can be considered as a limit of more general view
including the cases of compact supports; for example, for
cnoidal profiles withm < 1 and K�m� < ∞. The compact sup-
port can be naturally motivated physically here via choosing
the acoustic pulse width restricted by the value 2K�m�, since
acousto-optical interaction is absent outside this pulse. To ob-
tain a qualitative insight into evolving the cnoidal profiles with
a mismatch in an area of relatively small moduli m (i.e., for
quasi-trigonometric profiles), one can exploit the approximate
expressions [18]

sn�z;m� ≈ sin�z� −m
4
�z − sin�z� cos�z�� cos�z�; (20a)

Fig. 1. Acoustic component. With growing m, initially a rectangular
pulse of the finite width π, creating a compact support, is converted
into a hyperbolic secant pulse giving infinite support for optical com-
ponents of the coupled state.

Fig. 2. Optical component. Initially trigonometric profile with com-
pact support π is transformed into a hyperbolic profile with infinite
support as the modulus m grows from zero to unity.
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cn�z;m� ≈ cos�z� −m
4
�z − sin�z� cos�z�� sin�z� (20b)

with z � x
����������������
σ2 � η2

p
and under condition m2 ≪ m, i.e., practi-

cally with 0 ≤ m ≤ 0.4.
The discussed possibilities were related to single-pulse pro-

files due to taken above restriction by the case (N � 1,
M � 0). However, keepingM � 0, one can consider the cases
withN > 1. The performed analysis demonstrates that cnoidal
profiles allow existing various multipulse, i.e., N -pulse pro-
files, depending on a number of the periods 2K�m� selected
as the compact support. Consequently, one can consider a
condition of localization, which is perfectly characterized
by compactness of support, for the scattered light intensity
within the distance L0 of acousto-optical interaction and find
that L0

����������������
σ2 � η2

p
� 2K�m�N , so that the localization distance

can be taken; for instance, to be L0 � L. The scattered light
intensity will be nonzero only in the spatial interval occupied
the nonoptical wave; therefore the envelope of the scattered
wave will be localized. Namely, its distribution inside the
acoustic pulse will have N partial peaks in its envelope, while
the optical pump intensity will have N holes. When all these
phenomena occur, one may say that an N -pulse dissipative
coupled state is shaped within a three-wave collinear light
scattering. The number N of bright or dark pulses in optical
components of any dissipative coupled state is connected
with the frequency mismatch η as η2 � 4K2�m�N2L−2

0 − σ2.
To consider the dynamics in the lossy case, one has to

introduce an additional coordinate parameter ξ ∼ Vt that
determines current positions of weakly coupled states in a
process of its propagation through a crystal. In so doing,
one can follow evolving various cases of the light intensity
distributions ja0j2�x� and ja1j2�x� in the weakly coupled
acousto-optical states. For the initially chosen profile
U0 � q−1σsech�σ�x − ξ��, describing hyperbolic secant shape
lossless acoustic pulse, one can write

ja0j2�x; ξ� �
J2
0σ

2

σ2 � 4η2
sech2�σ�x − ξ�� exp�−2αx�; (21a)

ja1j2�x; ξ� � J2
0 exp�−2αx�

4η2 � σ2tanh2�σ�x − ξ��
σ2 � 4η2

: (21b)

For the lossless rectangular acoustic pulse of the same ampli-
tude q−1σ, one can write

ja0j2�x; ξ� � J2
0

�
η2

σ2 � η2
� σ2

σ2 � η2
· cos2

�
�x − ξ�

����������������
σ2 � η2

q ��

× exp�−2αx�; (22a)

ja1j2�x; ξ� �
J2
0σ

2

σ2 � η2
sin2

�
�x − ξ�

����������������
σ2 � η2

q �
exp�−2αx�: (22b)

Exploiting Eqs. (21) and (22), one can follow the correspond-
ing dynamics for these pulses with, for example, L � 2,
J0 � q � 1, α � 0.1, and σ � 10 (see Fig. 3).

4. CHARACTERIZING THE SOLITARY
PROFILES OF WEAKLY COUPLED STATES
Now let us determine the localization distance (or, what is the
same, the pulse width) L0 as the function of the mismatch η

with σ � f0.5; 1.0; 2.0; 3.0g as a parameter. For a hyperbolic
profile, “full width” of the corresponding pulse with infinite
support will be conditionally taken at the intensity level
0.01, so that one has

Trigonometric profile:L0 � πN∕
����������������
σ2 � η2

q
; (23a)

Hyperbolic profile:L0 � 2σ−1arcsechf0.1 · �1� �4η2∕σ2��1∕2g:
(23b)

One can see from Fig. 4 that growing σ leads to decreasing the
expected localization distance L0, i.e., reducing the localiza-
tion distance even with η � 0. Then the appearance of the mis-
match as well as its gain shorts further the localization
distance. Then one can characterize the combined dependen-
ces for the needed mismatch η, which provides shaping the
weakly coupled states of a given localization distance L0

(at the intensity level 0.01 for hyperbolic secant profile)
and relative efficiency of localization Ef as the functions of
the parameter σ.

Trigonometric profile:η �
�����������������������������
π2N2L−2

0 − σ2
q

;

Ef � σ2�σ2 � η2�−1; (24a)

Hyperbolic profile:η � �σ∕2�
����������������������������������������������
100 sech2�σL0∕2� − 1

q
;

Ef � σ2�σ2 � 4η2�−1: (24b)

Fig. 3. Evolution of the optical components ja0j2 and ja1j2 in the
weakly coupled acousto-optical states. (a) Hyperbolic profiles with
η � 1.5, infinite support. (b) Trigonometric profiles with η � 5,
N � 2, the compact support L0 ≈ 0.562.
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The corresponding plots are depicted in Fig. 5. The relative
efficiency of localization does not depend on optical losses
because this parameter takes into account only interrelation
between two optical components attenuating in accordance
with the same law. As a result, there are fans of direct rays
representing the same efficiency for each individual ray on
the plane fσ; ηg. These rays are starting from the coordinate
origin in such a way that a smaller tangent of a ray corre-
sponds to a higher efficiency of localization, so that the hori-
zontal ray gives unit efficiency. While larger tangents reflect
lower efficiency, and the vertical line gives zero one.

One can see that growing σ leads to decreasing the mis-
match η with the chosen distance L0. The efficiency of locali-
zation grows in accordance with σ as faster as the localization
distance L0 is longer.

To illustrate the contribution of linear optical losses let us
restrict ourselves by the case of availability of Eq. (22). Two
examples of intensity distributions for the optical component
ja1j2 inherent in three-wave weakly coupled state at the fixed
J0 � 1 and ξ � 0 versus both the dimensionless ratio �η∕σ�
and the dimensionless product �αx� characterizing optical
losses are shown in Fig. 6. One can see from these 3D plots
that doubling the ratio σ∕α via growing acoustic power density
or decreasing linear optical losses at η∕σ � 0 leads to the
transition from a one-pulse state to a two-pulse one. Thus
the practical aspects of realizing and observing three-wave
acousto-optical coupled states in media with optical losses
are another than in the case of nonoptical losses [15]. Linear

optical losses affect both the conditions of shaping weakly
coupled states as well as the process of their observation
(see Section 7). This is why, to identify the dissipative coupled
states under consideration, one has to estimate a set of the
simulations reflecting experimental conditions. These condi-
tions include the chosen lengths of interaction and level of
optical losses, which both can be varied only by changing
the crystalline cell.

5. ESTIMATIONS FOR ACOUSTO-OPTICAL
REALIZATION OF THE WEAKLY COUPLED
STATES IN COLLINEAR α-QUARTZ CELL
WITH LINEAR OPTICAL LOSSES
The α-quartz (i.e., α-SiO2) had been chosen as an appropriate
acousto-optical material for two reasons. First, rather devel-
oped technology, based on the controlled x-ray irradiation,
exists for manufacturing α-quartz samples with a predicted op-
tical transmission. Second, it is well known [19] that collinear
acousto-optical cell can be successfully realized with this
crystalline material. Using the propagation of pure longi-
tudinal elastic mode (VL � 5.72 · 105 cm∕s) along the [100]
axis. The Bragg regime of light scattering requires Q �
2πλLf 2∕�nV2� ≥ 4π for the Klein–Cook parameter [20]. Taking
λ � 633 nm, n � 1.55, and L � 6.0 cm, one yields Q ≈ 12.5 for
the acoustic frequencies f ≥ 46 MHz wherein the Bragg re-
gime is expected. Then one can find [21] the effective photo-
elastic constant pef � p41 and the figure of acousto-optical
merit M2 � 0.15 · 10−18 s3∕g for anomalous collinear interac-
tion within similar geometry.

Fig. 4. Localization distance L0 versus the mismatch η with σ as a
parameter: (a) for trigonometric profile with N � 1 and (b) for hyper-
bolic secant profile.

Fig. 5. Localization distance L0 and relative efficiency of localization
Ef on the plane fσ; ηg. (a) Trigonometric profile withN � 1 and (b) for
hyperbolic secant profile.
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Let us estimate a contribution of the acoustic losses in an
AOC with L � 6 cm. The characteristic acoustic frequency f 0
inherent in collinear interaction at λ � 633 nm in this α-quartz
cell is f 0 � ΔnVL∕λ ≈ 81.327 MHz, where Δn � 0.009 is the
difference between main refractive indices for ordinary and
extraordinary light modes. The total level γ of losses along
the collinear cell’s aperture L � 6 cm is equal to
γ � ΓLf 20 ≅ 0.12 dB, where Γ � 3.0 dB∕�cm · GHz2� is the fac-
tor of losses for the longitudinal acoustic wave [21]. The ob-
tained γ is so small that this AOC can be considered as
acoustically lossless.

Now one has to find acoustic power needed for observing
at least the first period (N � 1) of localizing the scattered light
field. The estimations show that with η � 0 the needed acous-
tic power density P � 2λ2σ2∕�π2M2� even forN � 1 is too high
for experimental realization, because performances inherent
in the piezoelectric transducer with the area 4 mm2 do not
allow significant excess of P ≅ 1 W∕mm2, which is associated
with σ ≤ 0.5 cm−1 for this AOC. For trigonometric profiles
with N � 1 and η � 0, one has to provide σ � π∕L0 or even
σ � πN∕L0 when N ≥ 1. These equalities are based on the
periodicity equal to πN at a zero light intensity level, which
is peculiar for the exploited trigonometric functions. For hy-
perbolic functions, one meets another situation. With η � 0,
one has to provide σ ≈ 6∕L0 at the above-chosen almost-zero

light-intensity level 0.01. This is why one has to consider the
possibilities related to η ≠ 0 and to formulate modified prac-
tical estimations.

It should be noted that, broadly speaking, one can expect
losses of acoustic energy via a mechanism of the second-
harmonic generation for the longitudinal acoustic mode pass-
ing along the [100] axis in α-SiO2. Nevertheless, using the
approach developed in [22], one can estimate that similar
losses are negligibly small due to rather low efficiency of such
a conversion at P ≅ 1 W∕mm2 in α-quartz crystal.

As determined initially, Δf � ηV∕π, so that for α-SiO2 one
can write Δf �kHz� � ηVL∕π ≈ 182 · η�cm−1�. By this, it means
that effect of localizing the scattered light with hyperbolic and
trigonometric profiles as well as shaping the hyperbolic and
trigonometric shape dissipative coupled states with the phase
mismatch can be identified and observed. The theoretical
results are listed in Table 1. Finally, one can estimate that
with α � 0.1 cm−1 and L � 6 cm, optical losses give the fa-
ctor exp�−2αL� ≈ 0.3012, which cannot be considered as
insignificant.

6. SCHEME FOR EXPERIMENTS WITH
THE α-QUARTZ COLLINEAR CELL
To realize experimentally the process of collinear interaction,
we have used the scheme shown in Fig. 7. It consists of a con-
tinuous-wave laser, a α-SiO2-crystalline AOC with a pair of the
Glan–Taylor crystalline polarizers (with the extinction ratio
105 each), a wide-aperture silicon photo-detector, and a set
of electronic equipment for both generating and registering
the corresponding electric very-high-frequency (VHF) radio-
wave signals. Initially, the needed shape of the modulating
envelope is provided by the amplitude modulator represented
by the arbitrary waveform generator (AWG2021, Sony). Then
a tunable radio-wave signal is applied to the electronic input
port of the collinear AOC cell through a wideband VHF am-
plifier HD18858 (10–1000 MHz, 8 W) (see Fig. 7) and to the
input of an oscilloscope (computer) as the etalon signal. This
electronic signal excites the piezoelectric transducer, which

Fig. 6. Light intensity ja1j2 of three-wave weakly coupled state at
J0 � 1 and ξ � 0 versus the ratio �η∕σ� and the product �αx�: (a) is
for σ∕α � 2.0 and (b) is for σ∕α � 4.0.

Table 1. Estimations Using α-Quartz Crystal

with L0 � 6 cm, σ � 0.43 cm−1, and Obtaining the

Needed Acoustic Power Density P � 1.0 W∕mm2

for the Three Cases

Optical Profile η� cm−1� Δf �kHz� N
Relative

Efficiency Ef.

Hyperbolic 0.4 72.829 1 0.038
Trigonometric 0.3 54.622 1 0.7
Trigonometric 0.9 163.866 2 0.2

Fig. 7. Schematic arrangement of the experimental setup.
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generates the pure longitudinal acoustic wave with the corre-
sponding carrier frequency. Together with this, the variable
analogue signal from the VHF generator synchronizes the
oscilloscope and determines the horizontal scale of a sweep.
At the same time, the detected light signal goes through the
bandpass filter and shapes the digitized oscilloscope trace
on the display of an oscilloscope or computer.

A two-mode co-propagating collinear AOC had an active
acousto-optical aperture of about L � 6 cm along the [100]
axis. The piezoelectric transducer was made of a thin �Y �
36°� cut lithium niobate crystalline plate, so that it excited
the purely longitudinal acoustic wave with conversion losses
of about 2 dB. The acoustic-power density slightly exceeding
1.0 W∕mm2 was provided at its resonant frequency close to
81.3 MHz inside the collinear AOC after reflection by the left
declined facet. In its turn, the right declined facet of the α-
quartz crystal directed the residual acoustic power to the
absorber. The continuous-wave light beam (from CrystaLaser
solid-state laser; the output optical power ≥50 mW; λ �
633 nm; transverse mode TEM00; single longitudinal mode,
providing narrow enough optical spectral line) had been used
as an optical pump during the experiments with the traveling-
wave regime of interaction between the pump and the
acoustic wave of finite amplitude. The amplitude factor α
of the linear optical losses was about 0.1 cm−1 (i.e., about
0.87 dB∕cm) inherent in the x-ray slightly irradiated α-quartz
crystal exploited at the chosen optical wavelength. The level
of irradiation was enough to increase markedly linear optical
losses but is too low to change measurably the other acoustic
and acousto-optical properties of α-quartz crystal [21]. This is
why a pair of not irradiated quartz prisms had been used to
exclude their effect on the subject of studies. The outside fac-
ets of these prisms had an antireflection coating. At least two
regimes of operation were used to estimate the frequency
dependencies at stepwise variations of the applied acoustic
power. They both include exploitation of the sweep-generator
from spectrum analyzer and provide operating with the band-
pass filter (bandwidth ∼5 kHz) and oscilloscope as well as
with the spectrum analyzer (bandwidth ≤10 Hz), in particular,
for calibrations and accurate measurements of frequency.
After the interaction with the acoustic wave, the scattered
light beam passed to the photo-detector through the second
polarizer giving us an opportunity to extract a well-cleaned
portion of the output optical signal. Slowly varying electronic
responses from the silicon photo-detector were exploited for
filtering and shaping the digitized oscilloscope traces.

7. BRIEF DISCUSSION
The physical possibility of shaping optical components inher-
ent in three-wave weakly coupled acousto-optical states has
been followed within our experiments. The measurements
have been performed with the controlled phase mismatches
under action of the corresponding acoustic pulses of finite
amplitude. During all experiments carried out, the acoustic
power density and the wavelength of a continuous-wave
optical beam were fixed at the level of about P ≈ 1 W∕mm2

(i.e., at σ ≈ 0.43 cm−1) and λ ≈ 633 nm.
As explained above, two limiting cases of the solitary cnoi-

dal waves, namely, trigonometric and hyperbolic profiles,
have been chosen for experimental verifications of the devel-
oped theory.

The phenomenon of shaping and localizing the optical com-
ponents of dissipative weakly coupled acousto-optical states
has been sequentially followed during our experiments for the
collinear geometry of three-wave interaction. The scattered
light wave components inherent in collinear dissipative
weakly coupled states have been observed in the irradiated
α-SiO2 collinear AOC providing the length of acousto-optical
interaction L � 6 cm. In the frames of these measurements,
the chosen frequencies were about f H ≈ 81.426 MHz for
hyperbolic shape pulses and f �1� ≈ 81.408 MHz and f �2� ≈
81.517 MHz for trigonometric shape pulses with N � 1, 2, re-
spectively. The main lobe of efficiency for collinear acousto-
optical interaction was estimated in width as δf ≈ 96.113 kHz
for the cell exploited. In these cases, the acoustic power was
varied from zero to P�Δf �1�� ≈ P�Δf �2�� ≈ 4 W.

Due to the fact that linear optical losses affect significantly
the processes of both evolving and detecting the optical com-
ponents of weakly coupled acousto-optical states, one could
expect that only a portion of linearly polarized light intensity,
injected initially into material of the AOC, will be registered by
the output photo-detector (Fig. 7). The direct measurements
have confirmed that total residual light intensity at the AOC’s
output prism facet is close to 30% of the light beam detected at
the input prism facet of the AOC (both these facets of prisms
had an antireflection coating) taking into account the correc-
tions related to reflections from intermediate optical surfaces
of this cell. After that, all the oscilloscope traces had been nor-
malized by the obtained level of light intensity. Undoubtedly,
the accuracy of such an approach to normalization can be a
subject for some insignificant refining, but nevertheless we

Fig. 8. Digitized oscilloscope traces for the transmitted jC0j2 (upper
traces) and scattered jC1j2 (lower ones) light intensities observed at
the output of the above-described α-quartz collinear AOC under action
of a rectangular acoustic pulse of finite amplitude and time width
about 10.5 μs: (a) N � 1, f �1� ≈ 81.408 MHz and (b) N � 2,
f �2� ≈ 81.517 MHz.
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consider the estimated (in such a way) correlations between
the detected intensities of optical components as sufficiently
adequate to real ratios. A few examples of the corresponding
digitized oscilloscope traces peculiar to the desired optical
components are shown in Figs. 8 and 9.

Excluding the efficiency of localization, which requires
much higher acoustic-power density, the experimentally ob-
tained oscilloscope traces can be qualitatively compared with
the above-depicted theoretical curves for the optical compo-
nents of the weakly coupled acousto-optical states shown in
Fig. 3. For trigonometric profileswithN � 2, one can seedirect
correlations between plots in Figs. 3(b) and 7(b). Namely, they
both exhibit two oscillations in the falling down transmitted
and scattered light componentswithin the corresponding com-
pact supports determined by the acoustic pulse width. For hy-
perbolic profiles in their turn, one can find the correspondence
between theoretical plots inFig. 3(a) and traces inFig. 8 reflect-
ing the appearance of minimum and maximum in distributions
of the transmitted and scattered optical components, respec-
tively, within the registered portion of infinite support.

8. CONCLUDING REMARKS
The most important result of these measurements consists in
the fact that the phenomenon of originating a set of three-
wave weakly coupled acousto-optical states with the phase
mismatches is experimentally confirmed and the expected op-
tical components of these solitary waves have been revealed
and detected. Levels of light intensities achieved on each of

the obtained oscilloscope traces represent balances between
the above-mentioned acoustic power density about
P ≈ 1 W∕mm2, which was close to the limit of electro-
mechanical durability for the piezoelectric transducer ex-
ploited and the effect of the exploited phase mismatches.
Then one can note critically important contributions of these
phase mismatches, which made it possible to decrease essen-
tially the applied acoustic power density associated with
acoustic pulses of finite amplitude and prescribed profiles
specifically in the case of hyperbolic profiles.

The observed oscilloscope traces with hyperbolic profiles
have been detected at the signal-to-noise ratio that exceeds
unity only slightly, i.e., it lies rather close to a border of practi-
cally reliable identification. Thus we have revealed and stud-
ied a specific regime for appearing and evolving three-wave
dissipative solitary pulses. Namely, the three-wave weakly
coupled states that occur due to collinear Bragg light scatter-
ing by a relatively slow acoustic wave of finite amplitude in a
two-mode medium with square-law nonlinearity and linear op-
tical losses have been investigated. A novel quasi-stationary
analytic description of similar weakly coupled states with
the phase mismatches has been developed. The proposed
approach allows initiating analytic description of the mis-
matched weakly coupled states either from the acoustic wave
of finite amplitude or from one of the optical components. The
availability of compact and infinite support has been consid-
ered in detail using the cnoidal pulse profiles as an example. In
connection with this, two limiting cases for cnoidal profiles
have been characterized and estimated.

The arranged experimental setup made it possible to ob-
serve optical components inherent in the mismatched weakly
coupled states via acousto-optical experiments. For this pur-
pose, the specially created collinear AOC based on the x-ray
irradiated α-quartz crystal, exhibiting the given optical losses,
had been exploited. One can note rather good correspon-
dence of the obtained numerical estimations with practically
observed magnitudes of the frequency detuning, acoustic
power density, and efficiency of localization within the
proof-of-principle experiments carried out.
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