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We compare two phase optical elements that are employed to generate approximate Bessel–Gauss beams of
arbitrary order. These elements are the helical axicon (HA) and the kinoform of the desired Bessel–Gauss beam.
The HA generates a Bessel beam (BB) by free propagation, and the kinoform is employed in a Fourier spatial
filtering optical setup. As the main result, it is obtained that the error in the BBs generated with the kinoform
is smaller than the error in the beams obtained with the HA. On the other hand, it is obtained that the efficiencies
of the methods are approximately 1.0 (HA) and 0.7 (kinoform). © 2014 Optical Society of America
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1. INTRODUCTION
In recent years the study of Bessel beams (BBs) has become
an attractive topic of research in optics [1–3]. The orbital
angular momentum and the invariance under propagation
of BBs have propitiated their application in nonlinear optical
guides [4] and optical tweezers [5–7], among other fields. The
BBs have been generated with different techniques. The
method proposed by Durnin et al. [8], based on the Fourier
transform of a narrow annular slit, allows the generation of
a zero order BB. Later on, a BB of arbitrary order was gener-
ated by encoding a helical axicon (HA) using a computer-
generated hologram [9,10]. Another approach for obtaining
an arbitrary BB requires the generation of a high-order
Laguerre–Gauss beam that is employed to illuminate an axi-
con [11]. An arbitrary optical field, and a BB as a particular
case, can be generated employing general-purpose synthetic
phase holograms (SPHs) [12–14]. The drawback of these SPHs
is their relatively low efficiency.

The efficiency in the generation of a BB with a HA is
increased by implementing this optical element with a phase
spatial light modulator (SLM) [15,16]. The HA, whose phase
structure generates convergent conical waves, produces
high-order BBs by free propagation, without the necessity of
additional components. Another phase optical element that
allows the generation of a BB with relatively high efficiency
is the so-called Bessel beam kinoform (BBK), whose phase
modulation is the phase of the BB itself [16–18]. This optical
element has been employed in a 4-f optical setup, with a binary
spatial filter (SF), for generating an arbitrary order BB [17].

Considering that the natural mode of a laser source is a
Gaussian beam, it is usual and convenient to consider the gen-
eration of Bessel–Gauss beams (BGBs). A BGB is obtained by
employing a Gaussian beam as the illuminating source in the
setups that employ HAs and BBKs to generate a BB. In the

performance evaluation of HAs and BBKs it is important to
consider the accuracy of the BGBs generated by these optical
elements. A low efficiency in the generation of a BGB can be
overcome by increasing the power of the light source. How-
ever, errors in the intensity and phase profiles of the BGBs
cannot be easily corrected. An accurate BGB is required,
e.g., in a laser resonator, for a good mode–matching of the
beam to the resonator cavity [19].

In the present study we analyze and evaluate the perfor-
mances of HAs and BBKs, as BGB generators. In this analysis
we consider the efficiencies of both methods and the accuracy
of the intensity profiles and phases of the approximate gener-
ated BGBs. The accuracy is evaluated by the root mean square
deviation (RMSD), between the synthesized BGBs and their
corresponding analytic BGBs.

In order to make the reading of the manuscript self-
contained, in Section 2 we review the basic theory and the
general aspects of the setups that employ HAs and BBKs to
generate a BGB. In Section 3 we evaluate numerically the
efficiency and the accuracy of the two methods. The experi-
mental implementation of the two methods is illustrated in
Section 4. Conclusions and final remarks are presented in
Section 5.

2. PHASE OPTICAL ELEMENTS
The complex amplitude of the desired qth order BGB is
expressed as

b�r; θ� � Jq�2πr∕r0� exp�−r2∕w2� exp�iqθ�; (1)

where (r, θ) are polar coordinates, r0 is the asymptotic radial
period, w is the waist of the Gaussian modulation, and Jq is
the qth order Bessel function. Let us consider an optical
element with transmittance
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t�r; θ� � f 1�r� exp�iqθ�: (2)

This function can be expressed, within the radial domain
[0, R], by the Fourier Bessel series

t�r; θ� �
X∞
n�1

bnJq�λnr∕R� exp�iqθ�; (3)

where λn is the nth positive root of Jq�x�, and

bn � 2

J2
q�1�λn�

Z
1

0
xf 1�Rx�Jq�λnx�dx: (4)

When the optical element t�r; θ� is illuminated by the
Gaussian beam exp�−r2∕w2�, the field transmitted is formed,
according to Eq. (3), by a series of qth order BGBs with radial
frequencies proportional to the roots λn. Therefore, the optical
device t�r; θ� in Eq. (2) is potentially useful for the generation
of BGBs. The transmittances of the HA and the BBK are par-
ticular forms of the function t�r; θ�. The setups where the HA
and the BBK have been employed to generate a BGB, are next
briefly reviewed.

A. Bessel Beam Kinoform
The BBK transmittance is given by Eq. (2) with radial
modulation

f 1�r� � sgn�Jq�2πr∕r0��circ�r∕R�; (5)

where sgn denotes the signum function and circ�r∕R� is a
circular pupil of radius R that bounds the device. Now, it is
assumed that the relation 2πR∕r0 � λm is fulfilled for the root
λm. Thus, the mth order BGB transmitted by the BBK, when
it is illuminated by the Gaussian field exp�−r2∕w2�, corre-
sponds to the qth order BGB given in Eq. (1), with weighting
factor bm. Moreover, the integrand in Eq. (4) for n � m
becomes positive, providing a relatively high value for the co-
efficient bm. Since the Fourier spectra of these multiple BGBs
is formed by concentric rings of different radii, the mth order
BGB can be isolated in the Fourier domain of the BBK by
applying an annular pupil.

To illustrate the general features of the method we consider
the BBK of order q � 1 assuming that m � 10 and that the
waist of the Gaussian beam is w � R. The BBK phase and
the numerically computed Fourier spectrum modulus of the
transmitted field are depicted in Figs. 1(a) and 1(b). In
Fig. 1(b) the brightest ring is the Fourier spectrum of the first
order BGB that corresponds to the index m � 10. The spec-
trum filtering is made by an annular pupil that only transmits
the light of the brightest ring. The inner and outer radii of this
pupil coincide with the dark zones that limit the brightest ring.
The field transmitted by the filter, shown in Fig. 1(c), is
Fourier transformed to generate the desired BGB. The nor-
malized intensity of the numerically generated BGB in this
case is partially displayed in Fig. 1(d).

B. Helical Axicon
The HA transmittance is given by Eq. (2) with radial
modulation

f 1�r� � exp�−i2πr∕r0�circ�r∕R�: (6)

A rough picture of the spatial distribution of the light trans-
mitted by the HA, shown in Fig. 2, is obtained from geomet-
rical ray tracing, considering only the radial phase of the
element. The radial phase of the HA deviates incident rays
by an angle ψ � asin�λ∕r0�, where λ is the light wavelength.
Thus, it can be shown that the largest section of interference
of the conic beams, at the center of the dark gray zone in
Fig. 2, occurs at the distance z � zc � R�r20 − λ2�1∕2∕�2λ�. In
Section 3, the approximate BGBs generated by HAs are com-
puted and evaluated at the plane z � zc.

The field transmitted by the HA is formed, according to
Eq. (3), by multiple qth order BGBs with different spatial
frequencies and different amplitudes bn. Assuming that the
relation 2πR∕r0 � λm is fulfilled for the root λm, themth order
BGB transmitted by the HA corresponds to the qth order BGB
given in Eq. (1), with weighting factor bm.

We compute the optical field freely propagated from the HA
using the angular spectrum method [20]. Considering that the
HA, whose transmittance is given by Eq. (2), is illuminated by
a Gaussian field exp�−r2∕w2�, the Fourier transform of the
transmitted field is given by exp�iqϕ� F1�ρ�, where F1�ρ� is
the qth order Hankel transform of f 1�r� exp�−r2∕w2�. The
optical field propagated to the plane located at a distance
zc from the HA is expressed as

Fig. 1. (a) Phase modulation of the first order BBK, (b) Fourier spec-
trum modulus of the BBK when it is illuminated by the Gaussian beam
exp�−r2∕R2�, (c) BBK Fourier spectrum after the application of the
annular SF, and (d) intensity of the numerically generated BGB.

Fig. 2. Interference region (dark gray), where a BGB is approxi-
mately generated by a HA and plane z � zc of maximum interference
area.

488 J. Opt. Soc. Am. A / Vol. 31, No. 3 / March 2014 Arrizón et al.



g�r; θ� � exp�iqθ�g1�r�; (7)

where g1�r� is the inverse Hankel transform of the product
F1�ρ� exp�ikzc�1 − λ2ρ2�1∕2�� and k � 2π∕λ. This method is
applied in Section 3 to compute and evaluate the approximate
BGBs generated with HAs.

3. PERFORMANCE OF THE TECHNIQUES
Next, we analyze the performance of HAs and BBKs as BGB
generators. It is assumed that the radial domain [0, R] of these
optical elements covers m roots of the radial modulation
Jq�2πr∕r0� of the BGB to be generated. We also assume that
the optical elements are illuminated by a Gaussian beam with
amplitude exp�−r2∕w2�. Although the width of the Gaussian
beam can be arbitrarily chosen for numerical simulations,
we adopt the reasonable valuew � R. For this width the pupil
of the optical elements transmits approximately 86.5% of the
power of the Gaussian beam.

A. Efficiency
The efficiency of a BBK and a HA in the generation of a BGB is
the optical power of this generated beam, normalized by the
optical power transmitted (or reflected) by the optical
element. A HA generates an approximate BGB with an effi-
ciency close to 1.0. The reason is that, as suggested in Fig. 2,
the whole optical field transmitted by the HA forms the coni-
cal waves that interfere to generate the BGB. In the case of the
BBK, the BGB is obtained from the light transmitted by the
binary SF applied to the brightest ring in the BBK Fourier
spectrum (Fig. 1). In this case the efficiency can be computed
by the power of the light transmitted by the binary filter, nor-
malized by the power of the complete Fourier spectrum of the
BBK. As illustrative cases we compute the efficiencies of
BBKs employed to generate BGBs of orders q � 0 to 10, with
m � 10 and m � 20. The obtained efficiencies, shown in
Fig. 3, are similar to the ones obtained for many other values
of q and m.

B. Accuracy
Considering the transmittances of the BBK and the HA, and
the optical setups employed to generate an approximate
BGB with these optical elements, the complex amplitudes
of the generated beams can be expressed by the function
exp�iqθ� g1�r�, as shown in Eq. (7). On the other hand
the complex amplitude of the exact qth order BGB
[Eq. (1)] has the form b�r; θ� � exp�iqθ�b1�r�, where b1�r� �
Jq�2πr∕r0� exp�−r2∕w2�. Thus, in the evaluation of an

approximate BGB generated with any of the discussed meth-
ods, we only need to compare the radial modulations g1�r�
and b1�r�. For both optical elements the generated BGB is
computed and evaluated for r in the interval [0, R∕2] that cor-
responds to the section of interference at the plane z � zc
(Fig. 2). The RMSD of g1�r� respect to b1�r� is given by

D �
�
A−1

Z
R∕2

0
jb1�r� − α exp�iβ�g1�r�j2dr

�
1∕2

; (8)

where α exp�iβ� is a complex constant for the best fitting of
the complex fields g1�r� and b1�r�, and A � R∕2 is the length
of the domain where the deviation is computed. The values of
α and β are obtained from the conditions ∂D∕∂α � 0
and ∂D∕∂β � 0.

Representative RMSDs for the BGBs generated using the
two methods are shown in Fig. 4. These results correspond
to BGB orders q � 0 to 10 with m � 10 and m � 20. An
important result is that the method employing BBKs provides
significantly lower RMSDs than the approach using HAs.
The RMSD in Eq. (8) takes into account both the phase
and the intensity errors of the generated BGB. In the consid-
ered cases we computed the fitting parameters α and β after
the normalization of b1�r�.

Representative phase and intensity profiles of the approxi-
mate first-order BGBs generated with the two methods are
displayed in Figs. 5 and 6. The function g1�r� considered in
each case is multiplied by the fitting factor α exp�iβ�. The
number of roots of the BGB radial modulation in the element’s
radius R for the discussed cases are respectively m � 10 and
m � 20. The radial coordinate r in the interval [0, R∕2] of the
plots appears normalized by the asymptotic period r0. For
reference, the transverse normalized intensities and the

Fig. 3. Efficiencies of BBKs with m � 10 and m � 20 in generation
of BGBs of orders q � 0 to 10.

Fig. 4. RMSDs of transverse profiles of BGB of orders q � 0 to 10
generated by HAs and BBKs, employing pupils with (a) m � 10
and (b) m � 20.
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phases of the theoretical BGBs are also presented in
each case.

In some applications it is only important to consider the
intensity profiles of the generated beams. In this case a con-
venient evaluation of the beams is provided by the normalized

RMSD between Ig�r� and Ib�r�, which correspond to the inten-
sities of the fields g1�r� and b1�r�, respectively. Such RMSD is

D �
�
A−1

Z
R∕2

0
jIb�r� − αIg�r�j2dr

�
1∕2

; (9)

where α is a scaling constant for the best fitting of the func-
tions Ig�r� and Ib�r�, obtained from the condition ∂D∕∂α � 0.
The RMSD formula in Eq. (9) provides lower values than the
RMSD in Eq. (8) because it ignores phase errors. Examples of
the intensity-only RMSDs, presented in Fig. 7, correspond to
the BGBs of orders q � 0 to 10, with m � 10.

4. EXPERIMENTAL BEAM SYNTHESIS
EXAMPLES
The optical setup where BBKs are employed to generate
BGBs, depicted in Fig. 8, was previously described in the cited
[17]. In this setup, the Gaussian beam of a He–Ne laser is
expanded (by the beam expander BE) to illuminate a reflec-
tive type phase SLM (from HOLOEYE Photonics AG). The
light reflected by the BBK, which is displayed in the SLM,
is the input of a 4-f optical system, formed by two lenses
(L1 and L2) and an annular SF. The Lens L1 projects the
BBK Fourier transform to the SF plane. The brightest ring
in this Fourier spectrum is transmitted by the SF, and Fourier
transformed again (by lens L2) to generate the BGB, which is
detected by a CCD camera. The setup for a HA is similar to
that in Fig. 8, but in this case the components L1, L2, and SF
are removed, and the sensor of the CCD is placed at a distance
z � zc from the SLM, where the maximum interference area of
the HA conic waves appears.

We implemented and displayed in the SLM a HA and a BBK
for the generation of a first order BGB, bounded by a pupil
that covers 10 roots of the function J1�2πr∕r0�. The Gaussian
beam is conditioned to show a width w approximately equal
to the radius R of the pupil limiting the displayed optical
elements. To avoid light reflected without modulation in
the optical axis of the setup, the transmittances of the BBK
and HA are multiplied by a linear phase carrier, which allows

Fig. 5. (a) Transverse phase profiles and (b) phases of a theoretical
BGB and of the approximate BGBs generated by a HA and a BBK with
m � 10.

Fig. 6. (a) Transverse intensity profiles and (b) phases of a theoreti-
cal BGB and of the approximate BGBs generated by a HA and a BBK
with m � 20.

Fig. 7. RMSDs of transverse intensity profiles of BGB of orders q � 0
to 10 generated by HAs and BBKs, employing a pupil with m � 10.

Fig. 8. Optical setup for the experimental generation of a BGB
employing a BBK.
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an appropriate off–axis generation of the BGB. The phase cur-
vature of the Gaussian beam illuminating the SLM is measured
and compensated in the phase functions displayed in this
device. The intensities of the experimentally generated
first-order BGBs are shown in Fig. 9 and the normalized trans-
verse intensity profiles of these beams are depicted in Fig. 10.
For comparison, the intensity profile of the desired BGB is
also presented in Fig. 10. The displayed profiles have been
corrected by the fitting factor α, obtained from the relation
∂D∕∂α � 0, for the deviation D expressed in Eq. (9). The
intensity profiles of the experimentally generated fields
approximately correspond to the numerically calculated
intensity profiles displayed in Fig. 5(a). The RMSDs of the
experimental intensity profiles, computed with Eq. (9), are
approximately 0.008 for the BBK and 0.05 for the HA. These
RMSDs are a little larger than the ones obtained numerically
for the HA and the BBK with the parameters considered in the
experiment, which correspond to the case q � 1 in Fig. 7.

5. FINAL REMARKS AND CONCLUSIONS
We have evaluated and compared the intensity and phase pro-
files of BGBs generated with HAs and BBKs. The results
proved that the BBKs allow the generation of BGBs more
accurately than the HAs. The accuracy is measured by the
RMSD of the transverse profiles of the fields generated by
the two considered optical devices. Such deviation is mea-
sured respect to the desired BGB. In a first case the RMSD
considers both the phase and intensity errors in the generated
fields. In the second case the RMSD takes into account only
the intensity profiles.

When any of the considered optical elements, the BBK and
the HA, is illuminated by a Gaussian beam, the transmitted
field is formed by multiple BGBs with different radial frequen-
cies. In the case of the BBK, the employed spatial filtering
setup allows the isolation of a single BGB, with the desired
frequency. Therefore the generated BGB in this case shows
a very low RMSD. A drawback of this method is the loss of
approximately 30% of light power in the filtering step.

In the case of the HA, several of the BGBs transmitted by
the optical element partially interfere in the propagation space
to form an approximate version of the desired BGB. This
explains the higher RMSD for the HA case compared to
the BBK case, and thus, the decreased accuracy. The positive
counterpart is that the efficiency in this case is close
to 1.0.

If the application of a BGB requires a high precision in its
intensity profile and phase it is preferable the use of a BBK
(and its required setup) to generate it. However, if the appli-
cation does not require a highly precise BGB it can be gener-
ated using a HA. The advantages in this case are the relatively
high-energy throughput of the approach and the simplicity of
the required setup.
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