
Optics Communications 349 (2015) 120–124
Contents lists available at ScienceDirect
Optics Communications
http://d
0030-40

n Corr
E-m
journal homepage: www.elsevier.com/locate/optcom
Ultracold two-level atom in a quadratic potential

F. Soto-Eguibar a, A. Zúñiga-Segundo b, B.M. Rodríguez-Lara a,n, H.M. Moya-Cessa a

a Instituto Nacional de Astrofísica, Óptica y Electrónica, Calle Luis Enrique Erro No. 1, Sta. Ma. Tonantzintla, Pue. CP 72840, Mexico
b Departamento de Física, Escuela Superior de Física y Matemáticas, IPN Edificio 9, Unidad Profesional ‘Adolfo López Mateos', 07738 México D.F., Mexico
a r t i c l e i n f o

Article history:
Received 16 January 2015
Received in revised form
18 March 2015
Accepted 19 March 2015
Available online 20 March 2015

Keywords:
Quantum optics
Cavity-QED
Mazer
x.doi.org/10.1016/j.optcom.2015.03.048
18/& 2015 Elsevier B.V. All rights reserved.

esponding author.
ail address: bmlara@inaoep.mx (B.M. Rodrígu
a b s t r a c t

We use a right unitary decomposition to study an ultracold two-level atom interacting with a quantum
field. We show that such a right unitary approach simplifies the numerical evolution for arbitrary po-
sition-dependent atom–field couplings. In particular, we provide a closed form, analytic time evolution
operator for atom–field couplings with quadratic dependence on the position of the atom; e.g. a two-
level atom near an extremum of a cavity field mode amplitude. Our approach allows us to show that the
center of mass wave function may be squeezed by choosing a proper atom–field initial state.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The Jaynes–Cummings (JC) model describing the interaction of
a two-level atom with a quantized field mode [1] is a solvable
working model of the micromaser [2]. In this model, the center of
mass velocity of the two-level atom is slow enough to allow
controlled atom by atom interaction with the field but fast enough
to be described by classical physics; e.g. thermal Rydberg atoms
passing through a superconducting cavity showing Rabi oscilla-
tions [3]. In the limit case of a two-level atom so slow that its
center of mass motion needs to be quantized, the system is de-
scribed by the following Hamiltonian [4]:

⎛
⎝⎜

⎞
⎠⎟H p a a g z a a

1
2 2

( ) ,
(1)

q
z

2 ω
ω

σ σ σ^ = ^ + ^ ^ + ^ + ^ ^ ^ + ^^† †
− +

where the quantized motion of the two-level atom with unitary
mass has been taken in the ẑ-direction with associated canonical
momentum p̂, the quantum field is described by the annihilation

(creation) operators â (â
†
) and the frequencyω, and the inner state

of the two-level atom by the Pauli matrices jσ̂ with j z, ,= + − and
the transition frequency ωq. Two regimes of interest can be
identified for this model, depending on the ratio between the
atomic kinetic energy and the field–atom interaction energy [5]:
the intermediate regime, where the mean atomic kinetic energy is
of the order of the mean field–atom interaction energy, and the
mazer regime, where the kinetic energy is smaller. Amplification
via z-motion induced emission of radiation occurs in the latter and
gives origin to the mazer name [5–8]. This model is of interest as
ez-Lara).
cavity quantum electrodynamics (cavity-QED) experiments in
these two regimes appear feasible with microwave and optical
quantum fields [7,9,10]. Also, it is feasible to control or switch off
spin interactions of ultracold atoms trapped in optical lattices [11],
as well as to address individual sites of such lattices [12,13] at the
moment and, in the near future, it may be possible to couple an
individual site to a quantum field as cavity-QED has been demon-
strated with Bose–Einstein condensates [14,15].

In the theoretical side of the problem, analytic solutions are
known for electromagnetic modes described by sinusoidal and
mesa functions [5] and sech2 function [7]. Also, an adiabatic ap-
proximation has been proposed by sinusoidal and Gaussian modes
[16]. Here, we introduce a right unitary approach to the problem
and provide an analytic solution for a quadratic mode. A quadratic
mode may be related to an ultracold two-level atom approaching
the maximum of a cavity field in an oblique path or trapped in a
sinusoidal optical lattice. In the following section, we introduce
the right unitary decomposition of the model Hamiltonian for a
general quantum field and construct its time evolution operator.
Then, we study the resonant case for quadratic couplings and
provide a closed form analytic time evolution operator for the
system. At this point, we show that an adequate initial state pro-
vides us with a squeezed wave function for the center of mass
motion of the atom. Finally, we study the interaction of an ultra-
cold excited atom with number and coherent states of the quan-
tum field.
2. Right unitary decomposition

By moving into the frame defined by the excitation number,
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a a /2zσ^ ^ + ^†
, rotating at frequency ω, we obtain an interaction pic-

ture Hamiltonian,

⎛
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⎠⎟H p g z a a
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( ) ,
(2)I z

2 δ σ σ σ^ = ^ + ^ + ^ ^ ^ + ^^†
− +

where the parameter qδ ω ω= − is the detuning between the two-
level atom and field frequencies. We can follow a right unitary
approach [17,18] to decompose this Hamiltonian into the follow-
ing product:

H TR H R T , (3)I y z y
^ = ^^ ^ ^ ^† †

where we used a rotation of /4π radians around the yσ̂ operator,

R e , (4)y
i ( /4) y^ = π σ̂
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and the transformation,
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The latter is right unitary, TT^^ =
†

and T T^ ^ ≠
†

, due to the properties
of the London exponential of the phase [19,20], also known as
Susskind–Glogower [21] operators,
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that yield, in the Fock or number state basis,

VV , (8)^ ^ =
†
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†

The new auxiliary Hamiltonian is given by
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. (10)z z x
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Typically, a right unitary transformation may act as unitary in just
a sector of the corresponding Hilbert space, this is a well known
problem in phase operators [22,23]. Here, in order to calculate the

evolution operator, U t e( )I
iH tI^ = − ^

, it is straightforward to compute
each and every term of the corresponding power series to obtain

TR H R T TR H R T( )y z y
j

y z

j

y
^ ^ ^ ^ ^ = ^ ^ ^ ^ ^† † † †

[18]. Thus, the evolution operator of
the system is given by the following expression:

U t e( ) (11)I
iH tI^ = − ^

TR e R T . (12)y
iH t

y
z= ^^ ^ ^− ^ † †

In other words, the right unitary operators for this Hamiltonian
behave like unitary operators in this particular ordering.

In summary, our right-unitary decomposition allows us to
construct the time evolution for any given coupling potential for
which Eq. (10) is solvable but this does not mean that it is
straightforward to interpret the results. In the literature, mazer
dynamics for sinusoidal and mesa function [5] and sech2 [7] are
well known. In the following, we will use our approach to solve
the quadratic potential mazer and show that it is straightforward
to cast the center of mass motion states as squeezed states in this
particular case. Furthermore, it seems that a specific operator ap-
proach has to be constructed for each and every potential of the
form zj. Thus, the construction of an analytic closed form evolution
operator for any given coupling function, g z( )^ , escapes our efforts
at the moment.
3. Time evolution for a quadratic coupling

Here, we will solve the problem for quadratic couplings

g z g z( )
2

. (13)0
2λ^ = ± | | ^

±

In this case, we can write the auxiliary Hamiltonian in the fol-
lowing form:
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where the new auxiliary Hamiltonian
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contains the standard, H p z( )/2
2 2λ^ = ^ + ^

+ , and inverted,

H p z( )/2
2 2λ^ = ^ − ^

− , harmonic oscillators, which are equivalent to
free propagation and degenerate parametric down-conversion, in
that order, or equivalently,
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Here we defined a frequency in terms of the number operator of

the field, n a a^ = ^ ^†
,
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also, we used a boson representation for the atomic center of mass
motion
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and the action of the squeeze operators,
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where the operator ξ̂ acts over the cavity field mode, over the
position and momentum operators yield

S zS ze S pS pe( ) ( ) , ( ) ( ) . (22)ξ ξ ξ ξ^ ^ ^^ ^ = ^ ^ ^ ^ ^ ^ = ^ξ ξ
† ^ †
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Note that each and every Fock state of the field, k f| 〉 , defines a

bipartite center of mass-field mode, { }j kCM f| 〉 | 〉 with j 0, 1, 2,= …,

and auxiliary frequency k k( )ω λ= | | .
The time evolution operator of such a model is given by

U t TR Se S R T( ) . (23)I y
iH t

y, o,^ = ^^ ^ ^ ^ ^
±

− ^ † † †
±
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For the sake of simplicity, let us consider the case of an atom and
cavity field on resonance, δ¼0. This allows us to construct a closed
form evolution operator
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4. Squeezing the atomic center of mass motion

Although on resonance the problem looks trivial as one can
construct a bare basis so that the Hamiltonian matrix is block di-
agonal. Such an approach, for some forms of the function g z( )^ ,
may miss some underlying physics. Here, we want to show how
the operator approach developed in the last section makes obvious
the engineering of squeezed center of mass motion states, which is
not so obvious in the block diagonal Hamiltonian approach.

Let us start with an ideal initial wave function, where the
quantized field is entangled with the inner states of the atom, and
the center of mass motion state is in the coherent state β| 〉,
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The time evolved wave function yields
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where we have chosen the positive sign in Eq. (13). At an
interaction time t k/2 ( 1)p π ω= + , the atomic center of mass
motion is described by an squeezed state

t
e e

TR e k i k( )
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(29)p
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where we have used the following fact

S n e S n S n[ ln ( )] [ ln ( )] [ ln ( )]i b b1
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ω ω ω^ ^ ^ ^ = ^ ^π− ^ ^ ††
at time tp, the

addition of a phase component to a coherent state,

e ii b b( /2) β β| 〉 = | − 〉π− ^ ^†
, with a coherent state defined as

e n n( / (n
n/2

0
2β β| 〉 = ∑ ! | 〉β−| |

=
∞ , and the definition of a squeezed co-

herent state, namely S k i i k[ln ( 1)] , ln ( 1)ω β β ω^ + | − 〉 = | − + 〉.
Note that the remaining two transformations, T̂ and Ry

^ , involve
just the inner state of the atom and the quantized field, therefore
leaving the atomic center of mass motion wave function
untouched.
5. An excited atom interacting with number and coherent
states

Let us assume an ultra-slow atom near the maximum of the
trapped coherent field inside a cavity. This allows us to approx-
imate the field-two-level atom coupling by a quadratic function on
z. In this case, it is possible to describe the coupling as a quadratic
potential and the evolution of the system is given by

t U t( ) ( ) (0) . (30)Iψ ψ| 〉 = ^ | 〉

In the most general case, we can consider a two-level atom in a
superposition of excited and ground states entering the cavity at
z0, with center of mass linear momentum p0, and consider some
general field state in the cavity,
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with the coherent parameter defined as ( )z ip1
2 0 0β = + ,

c c 1e g
2 2| | + | | = .
A practical example is to consider the two-level atom in the

excited state, c 1e = and c 0g = ; then, it is straightforward to cal-
culate quantities of interest, such as the mean value of the two-
level atomic inversion,
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It is also possible to calculate analytic expressions for the mean
position, z t( )〈^ 〉, momentum, p t( )〈^ 〉, or even the Q-function of the
field but they are not as compact as that of the mean atomic in-
version. The simplest case for this scenario is given by a field in a
Fock state,
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with atomic population inversions
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for the potential g z( )^
− . Note that the term

n j S n t k n( 1, )f CM CM f〈 | 〈 |^ ^ + | 〉 | 〉− can be calculated exactly and even
approximated for large photon numbers by the following [24].

In order to produce an example related to experimental data,
let us consider the information from a cavity-cooling scheme
presented in [25] where a single 85Rb atom is passed through a
high-finesse cavity, 4.4 105= × , that provides a coupling be-
tween the cavity TEM00 mode and the F F5 S 3 5 P 42

1/2
2

3/2= ↔ =
atomic transition with a strength of g/(2 ) 16 MHzπ = with an in-
teraction length of 9 mμ . For our example, we use the value of the
coupling strength as our frequency unit, g 10 = , and set the square
potential strength equal to that value, g0λ = , for the sake of sim-
plicity; under this assumption a unit of scaled time is 9.9471 ns.
We take the field and the atomic transition frequencies on re-
sonance, 0δ = , suppose an ideal square well trap that covers the



Fig. 1. Time evolution of the population inversion for initial states (a)
e(0) 0CM fψ β| 〉 = | 〉| 〉 | 〉 with ( )i0.25 0.25 / 2β = − + and (b) e(0) 2CM fψ β| 〉 = | 〉| 〉 | 〉 with

( )i0.25 0.15 / 2β = − + under the potentials g z( )^
+ (dashed blue) and g z( )^

− (dotted
red) with parameters g g10 = and g1λ = with g/(2 ) 16 MHzπ = . The Rabi oscilla-
tions given by the evolution under Jaynes–Cummings dynamics is also presented
(solid black). (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

Fig. 2. Time evolution of the mean value of (a) population inversion, (b) position
(units of /(mg) ) and (c) momentum (units of mg ) of the atomic center of mass
under the potential g z( )^

− with parameters g g10 = and g1λ = . The initial states are
e(0) CM fψ β α| 〉 = | 〉| 〉 | 〉 with coherent parameters 1α = and ( )ip0.25 / 20β = − +

where p 0.250 = (solid black) and p 0.150 = (dashed blue). In (a) the time evolution
of the population inversion under Jaynes–Cummings dynamics (dotted red) is in-
cluded. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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whole z-axis, and artificially place the atom at the initial position
z (0) 0.6819= nm that corresponds to an initial value z (0) 0.25=
in /(mg) units. We assume that the atom has two initial mo-
menta p (0) 0.25= and p (0) 0.15= in units of mg that corre-
spond to temperatures of 23.9937 and 8.6377 mK, in that order.
Fig. 1 shows the evolution of the atomic population inversion for
the Jaynes–Cummings model and for an ultracold atom under the
potentials g z( )^

± with the aforementioned parameters, and the
atom initially in the excited state, with a coherent center of mass
state with coherent parameter ( )i0.25 0.25 / 2β = − + , interacting
with a vacuum cavity field, n¼0, Fig. 1(a), and a slower atom in-
teracting with a two-photon cavity field, ( )i0.25 0.15 / 2β = − +
and n¼2, Fig. 1(b). Note how the quantization of the atomic center
of mass motion induces changes in the dynamics, even in the
presence of an empty cavity due to emission and absorption of the
initial excitation in the atom. A more realistic scenario involves the
atom finding a coherent field in the cavity. Fig. 2 shows the time
evolution of the mean population inversion, position and mo-
mentum under the potential g z( )− and the same set of parameters
above. Note how the differences in the population inversion are
negligible between the initial conditions and how the center of
mass movement of the slower atom is trapped before that of the
faster atom as expected.

6. Conclusion

We have shown that a right unitary decomposition simplifies
the problem of an ultracold two-level atom interacting with a
cavity field. In general, it is feasible to use our approach to produce
the exact numerical time evolution for arbitrary z-dependent
couplings for on- and off-resonance cases. In particular, we show
that a quadratic potential can be solved analytically both on- and
off-resonance. As an example, we provide a closed form evolution
operator on-resonance; here, the evolution operator allows us to
calculate closed forms for the mean values of the atomic inversion.
The time evolution of the mean intensity of the field, position and
momentum of the atomic center of mass can be calculated in
closed form but are complicated enough to avoid writing them
here. We explored the evolution of an atom originally in the ex-
cited state in the presence of number and coherent states.

We want to note that, in theory, it may be possible to use our
approach to deal with a generalized potential, via a power series
expansion and adequate sets of transformations, but this is
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unfeasible in practice because the set of transformations for each
and every power has to be worked out separately.
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