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We present for the first time a comparison under similar
circumstances between Laguerre–Gauss beams (LGBs) and
Bessel beams (BB), and show that the former can be a better
option for many applications in which BBs are currently
used. By solving the Laguerre–Gauss differential equation
in the asymptotic limit of a large radial index, we find the
parameters to perform a peer comparison, showing that
LGBs can propagate quasi-nondiffracting beams within
the same region of space where the corresponding BBs
do. We also demonstrate that LGBs, which have the prop-
erty of self-healing, are more robust in the sense that they
can propagate further than BBs under similar initial
conditions. © 2015 Optical Society of America
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The last two decades have seen a need to find new ways to
increase the channels for communications. For that purpose,
researchers have turned their attention to electromagnetic
structured wave fields, particularly those carrying orbital
angular momentum. Recent studies have shown that these
structured wave fields can boost classical and quantum commu-
nications, and are an excellent option to improve quantum
entanglement and quantum cryptography [1–5].

For many years, Gaussian beams were the preferred wave
fields, and researchers investigated their use in communications
and many other applications [6]. However, this only lasted un-
til the arrival of the families of the nondiffracting structured
Bessel and Bessel–Gauss beams (BGBs) [7,8].

When Bessel beams (BBs) were introduced and demon-
strated, the fundamental Gaussian beam was used as a reference
in order to evaluate the properties of the BBs. It was observed
that under same initial total power and the same initial full
width at half-maximum in spot size, they could present
advantages on propagation and power-transport efficiency over

Gaussian beams, and in some other instances, they could be
comparable [7–10].

From then on, there have been a great number of studies
comparing the fundamental bell-shaped Gaussian beam and
the multi-ringed BB under a variety of conditions in free space,
including the generation of nonlinear effects and in the accel-
erators of particle beams. In some cases, it has been found that
one beam may have better performance over the other or vice
versa, depending on the physical situation [11–21].

In a radially symmetric laser system, the Gaussian beam is
the lowest-order mode of an infinite family of structured multi-
ringed modes, the standard Laguerre–Gauss beams (LGBs)
[22,23]. There are also the elegant LGBs, which, like the
BGBs, have a complex argument [8,24]. These beams have also
been subjects of comparison, and it was found that, for a given
set of parameters, both propagate similarly [25]. These kinds of
beams are structured only within the finite, conical volume
where they can exist. Beyond this volume, both modify their
structure into a ring in the far field [26,27].

By reviewing the literature, one finds that high-order, stan-
dard LGBs with orbital angular momentum have received little
attention. This means that their whole set of properties have
not been fully studied to be able to properly make use of them.
Some of their properties can be fundamental for a variety of
potential applications, such as those mentioned above.

The purpose of this Letter is to present for the first
time a proper comparison of BBs with their peer family of ra-
dially symmetric Gaussian beams, the high-order LGBs. We
demonstrate that by imposing the right conditions, the LGBs
propagate quasi-nondiffracting beams like BBs within the same
conical volume of existence of BBs. Additionally, since they are
structurally stable outside that volume (although they do dif-
fract), they propagate further than BBs, which are restricted to
propagate over finite distances. Our investigations reveal that
LGBs also possess a more robust property of self-healing, show-
ing better recovery than BBs.

We start by defining LGBs, BBs, and BGBs, but the show-
down will be mainly between the LGBs and the BBs. LGBs are
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solutions of the paraxial wave equation with the cylindrical
coordinates �r;φ; z� and can be expressed as [6]
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where A0 is a constant which stands for the amplitude,
Ljmjn are the associated Laguerre polynomials, with n and m
as the radial and azimuthal orders, respectively, w0 is the
beam waist of the beam width w2�z� � w2

0�1� �z∕LD�2�,
R�z� � z�1� �LD∕z�2�, and Φ�z� � tan−1�z∕LD�, where
LD � kw2

0∕2 and k � 2π∕λ.
On the other hand, the initial conditions at z � 0 for the

BBs and BGBs can be expressed as [7,8]
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where Jm�·� is the first-kind Bessel function of orderm, kt is the
transverse component of the cone of the wave vectors of the
BBs and BGBs [7,8], AB , ABG are the respective amplitudes
of the beams, and wBG the waist of the BGB.

In order to obtain the parameters of the LGB profile in
Eq. (1) that makes its profile similar to the corresponding
BB in Eq. (2), we follow the procedure described in [28]:
rewrite the Laguerre–Gauss differential equation as an inhomo-
geneous Bessel differential equation, and look for the asymp-
totic behavior when n ≫ 1. After some algebra, we get
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where N � n� �jmj � 1�∕2 and Γ�·� is the gamma function.
This equation determines the relation among the main LGB
parameters in Eq. (1), and the waist, radial, and azimuthal in-
dexes n and m with the radial frequency kt of the BB in Eqs. (2)
and (3). This is the core of our investigation, as it establishes the
requirement for an LGB to behave similarly to a BB. Setting this
value at z � 0, we have the relation kt � 2

ffiffiffiffiffiffiffi
2N

p
∕w0.

It is easy to see that for any pair of indexes m and n, the rings
in a high-order LGB are confined within a disk of radius
R � w0

ffiffiffiffiffiffiffi
2N

p
, see, e.g., [29]. Thus, for the showdown we

use this radius to define the extent of the BB and the BGB
waist, i.e., wBG � R. A typical example of the intensity patterns
of LGBs and BBs at z � 0 is presented in Fig. 1. The left col-
umn is for the pair of indexes m � 0 and n � 10, while the
right column is for m � 5 and n � 10. The bottom row shows
the comparison of the corresponding intensity profiles of the
beams, including that of the BGB. The intensity profiles of
the three beams in the central region are practically the same
[see Figs. 1(e) and 1(f )]. The outermost rings differ in ampli-
tude and frequency due to the nonuniform distribution of the
zeros and the polynomial growth of the Laguerre–Gauss

function. Studying the transverse profiles of the beams by vary-
ing the values of the m and n, and by making m any positive
integer and making n ≥ 5, we observed that the likeness be-
tween the LGBs and BBs occurs within a disk of radius of
2w0 that encloses approximately the first n∕2 rings.

Having determined the radial frequency for the BBs
and the BGBs and their transverse extent, we can
now obtain their maximum propagation distance, which is
Zmax � R∕ tan θ ≈ R∕�kt∕k� ≡ LD. This relation establishes
that under similar circumstances, the maximum propagation dis-
tance of a BB is practically identical to the diffraction length of a
LGB. This is a very remarkable relation in our analysis, since the
distance LD defines the space within which the LGB can be con-
sidered quasi-collimated and their ringed structure does not change
significantly when propagating with minimum diffraction, like a
quasi-nondiffracting BB.

To demonstrate this, we next investigate the propagation of
the field distributions in Fig. 1 by numerically solving the para-
xial wave equation 2ik∂U∕∂z � ∇2U � 0 for the BB and
comparing it with the closed analytical solution of the LGB
in Eq. (1). The transverse radial coordinate is normalized to
the beam’s waist w0, and the propagation distance z with re-
spect to LD. In Fig. 2, the behavior of the intensity in the plane
x–z for the LGB (top) and BB (bottom) for m � 0, n � 10 is
shown. For reference, in both images, the triangular region of
existence of the BB and the external hyperbola of the LGB have

Fig. 1. Intensity patterns and profiles for Laguerre–Gauss beam
(LGBs) and Bessel beams (BBs). Left column: m � 0, n � 10; right
column: m � 5, n � 10. Top row: LGB; middle row: BB; and
bottom row: intensity profiles, LGB (blue line), BB (green line),
and BGB (red line).
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been marked with white dashed lines [29,30]. A closer look will
show that the behavior of both beams is practically identical
within the region of existence of the BB. Outside this region,
the BB has transformed into an outgoing Hankel wave [30,31]
while the LGB maintains its ringed structure but is clearly
spreading.

The on-axis intensity for the three beams when m � 0 and
n � 10 are shown in Fig. 3. At z � LD, the normalized on-axis
intensities of the BB and BGB decay to less than 0.25, while
that of the LGB decays to 0.5. However, for propagation dis-
tances smaller than 0.9LD, the on-axis intensity of the BB is
higher than that of the LGB.

In Fig. 4, the propagation of beams with orbital angular mo-
mentum with m � 5 is presented. As expected, we observe that
the dynamics are the same as for the case when m � 0.

The above result based on Eq. (4) is very relevant in a peer
comparison between LGBs and BGBs, since the control of the
LGB indexes has been seen as a drawback for the opticalmanipu-
lation and detection of Laguerre–Gauss modes in studies of
quantum entanglement [3,4]. Our results show that this should
not be the case for multi-ringed, high-order LGBs, thus opening
the possibility for investigating new potential applications.

Finally, we present another feature of the multi-ringed LGB
that is believed to be characteristic of nondiffracting BBs:

self-healing [32,33]. Such self-healing has been reported for
LGBs with one and two rings [34,35]. In Fig. 5, we present
the results at different propagation stages obtained from a
multi-ringed LGB and a BB that was initially obstructed by
an opaque disk placed off-axis. We can observe that the dynam-
ics of the LGB (left) are very similar to that of the peer BB
(right). But, since the LGB can propagate further than the
BB, it displays more robustness and has a better recovery. In
other words, LGBs can carry the required information more
efficiently beyond the distance than BBs can.

In conclusion, we have demonstrated that when compared
under similar circumstances, Laguerre–Gauss beams (LGBs)
can be a better option than Bessel beams (BBs) for many ap-
plications that are currently regarded as being proper for BBs.

Fig. 2. Behavior of the propagation on the plane x–z for a LGB
(top) and a BB (bottom) with m � 0 and n � 10. The conical region
for BB and the size of the LGB are indicated with a white dashed line.

Fig. 3. On-axis intensity for one diffraction distance of the BB (solid
green line), BGB (dotted red line), and LGB (dashed blue line) for the
case in which m � 0 and n � 10.

Fig. 4. Same as Fig. 2, but with m � 5 and n � 10.

Fig. 5. Self-healing of (a) BBs and (b) LGBs with m � 0 and n �
10 propagated at z � 0. (c) BBs and (d) LGBs at z � 0.2. (e) BBs and
(f ) LGBs at z � LD. First column BB, second column LGB. Both
columns have an identical density scale. Notice that at z � LD, the
BB has almost disappeared, while the LGB is clearly self-healing.
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We obtained the parameters to perform a peer comparison be-
tween an LGB and a BB, and demonstrated that in the region
of space where a BBs propagates as quasi-nondiffracting, its
peer LGB does as well. We demonstrated that LGBs possess a
more robust property of self-healing, and have the capability of
propagating over longer distances than their peer BBs. As LGBs
are being generated very efficiently in recent years, they can be
an excellent option for present and future applications [36–38].
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